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Abstract
In the context of precision psychiatry, voice characteristics in psychiatric disorders have significant potential
as diagnostic markers. However, most studies have focused on adults, resulting in a poor understanding of
paediatric voice characteristics. The diagnosis of attention-deficit/hyperactivity disorder (ADHD) lacks
objectivity and could potentially benefit from the inclusion of voice features as objective markers. This study
used linear mixed models and machine learning to investigate associations between voice characteristics
and parent-reported symptoms of hyperactivity and inattention in a population-based cohort. Two tasks were
used to derive speaking-voice characteristics: counting and sustaining a tone. 2418 recordings from 1460
children of the LIFE Child cohort aged 5–18 years (49% girls) were included. We analysed demographic and
health data, voice parameters, and hyperactivity/inattention scores from the Strengths and Difficulties
Questionnaire (SDQ). Results indicated linear associations between voice features, particularly fundamental
frequency and voice intensity, and SDQ scores. Machine learning models predicted hyperactivity/inattention
scores with moderate accuracy (r = 0.36). Predictive performance was higher in girls than in boys, an effect
largely attributable to overall lower symptom ratings by parents in girls. Our findings support the inclusion of
voice characteristics in research on diagnostic markers in paediatric populations and underline the need for
further studies to refine analytic approaches.

1 Introduction
At a time when around one in four children experience mental health problems [1, 2], precision psychiatry is
gaining attention as promising approach to personalised care. The use of preventive, diagnostic, and
therapeutic methods adapted to individual patients’ characteristics has been studied for more than two
decades [3]. Precision psychiatry aims to individualise mental health care e.g. by increasing accuracy of
diagnosis and treatment [4]. In the context of child and adolescent psychiatry, efforts have focused on
developing more accurate and precise diagnostic or risk stratification tools to tackle current, largely
subjective, diagnostic practice [5]. One approach to identifying objective markers is breaking down disorders
into their underlying pathophysiological features [6], which can be detected through measuring biosignals [7].

Acoustic biosignals are gaining recognition as tools to study pathophysiological mechanisms of psychiatric
disorders [8, 9, 10]. Voice features may contain essential information about an individual’s state and
potentially indicate pathologies [7, 11]. Human voice is produced by complex interactions between the
cognitive and neuromuscular system, making voice a highly sensitive output system [7]. Current research in
adults indicates decreases in the fundamental frequency (f0, the basic pitch of the voice) and f0 range in
individuals with major depressive disorder, which can result in monotonous intonation and a deeper voice
[12]. In anxiety disorders, studies have found a significant increase in the f0 [12]. A recent scoping review
points to the potential of paediatric voice as a promising method for the detection of several childhood
conditions and disorders, such as autism spectrum disorder [13]. If voice features were translated into health-
relevant indices, they could eventually become part of a more objective assessment within biomarker
batteries [11].

One promising field of voice related biomarker research is attention-deficit/hyperactivity disorder (ADHD):
Machine learning (ML) based studies in adults with ADHD have demonstrated the predictive utility of voice
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features for ADHD classification, as well as associations with symptom severity [14]. Biologically, ADHD is
linked to changes in the brain's dopamine signals, which impact motor control [15]. Voice production as well is
linked to dopamine levels and involves complex motor behaviour. Thus, changes in dopamine pathways
related to ADHD may alter vocal patterns in people with ADHD [16]. Children with ADHD seem to show altered
voice features (e.g., f0, intensity, jitter) and more hyperfunctional vocal behaviour (e.g., more shouting;
excessive, louder, faster talking) in comparison to their peers [17, 18]. These bodily changes make children
with ADHD prone to voice disorders [19, 20]. Investigating this component of ADHD pathophysiology, in the
form of voice features, could provide new insights and enrich the current state of knowledge in child and
adolescent precision psychiatry [5, 21].

Our population-based study investigated children's voice features that may serve as indices of ADHD using
multivariate statistics, including linear mixed models (LMM) and machine learning (ML) approaches. We
aimed to evaluate the association of different acoustic parameters obtained under several vocal tasks with
symptoms of hyperactivity/inattention (HI), as measured by the HI subscale of the Strengths and Difficulties
Questionnaire (SDQ) [22] in a large epidemiological cohort. Based on previous findings [17, 18], we
hypothesized that symptoms of hyperactivity/inattention are associated with higher voice intensity. Moreover,
we explored associations of further voice features including fundamental frequency (f0), jitter, maximum
phonation time (MPT) and Dysphonia Severity Index (DSI) and HI symptoms based on preliminary findings
from earlier research in small samples [17, 18, 23].

2 Participants and methods

2.1 Study design and participants
This study analysed data from the LIFE Child study. This is an ongoing epidemiological longitudinal cohort
study conducted at the Research Centre for Civilization Diseases in Leipzig, Germany (for details see [24] ).
The LIFE Child study protocols adhere to the Declaration of Helsinki. Written informed consent was received
from all parents and children over 12 years of age.

Inclusion criteria for our study were children aged between 5 and 18 years, for whom both speaking-voice
examination and information on SDQ HI values were available for one or more time points. Data from 1460
children (female: n = 716; male: n = 744) with a mean age of 10.96 years (range: 5.65–18.22) were included.
Participants were either part of the Health Cohort (n = 1297) or the Obesity Cohort (n = 163). Examinations
took place between the years 2012 and 2015. The number of visits varied between 1 (n = 736), 2 (n = 462), 3
(n = 231), or 4 (n = 31).

2.2 Methods

2.2.1 Demographic and health data
Demographic and health data were collected either by clinical interviews/questionnaires or clinical
examination. All examinations were carried out by trained medical investigators/paediatricians in the child-
friendly facilities of the outpatient clinic of the Research Centre for Civilisation Diseases in Leipzig. In addition
to voice-specific data, child's age, sex, Body Mass Index (BMI), socio-economic status (SES) and pubertal
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status were included in our study. Pubertal status was included due to missing information on voice change
in most participants. The examination methods relevant to this study are described below and in detail in the
study protocol [24] .

Socio-economic status

SES was calculated using a multidimensional index based on information provided by parents on their school
education and vocational training, their occupational status, and their net equivalent income. The
operationalisation used is based on the KiGGS study of the Robert Koch Institute [25]. SES scores can range
from 3.0 to 21.0, with values indicating low (3.0–8.4), medium (8.5–15.4), or high (15.5–21.0) SES.

BMI-standard deviation score (BMI-SDS)

The original BMI value was calculated using the body mass (kilogram) divided by the square of the body
height (m2) [24]. To ensure comparability between age and sex groups, BMI-SDS (standard-deviation-scores)
were calculated using the Kromeyer-Hauschild reference [26].

Pubertal status

The assessment of pubertal status as an indicator of physical maturity is based on Tanner's criteria for
pubertal development [27, 28]. For this study, a corrected form of the pubertal status was used. In some
cases, Tanner’s criteria did not align with corresponding hormone levels (endocrine values). Certain endocrine
values indicated a lower or higher physical maturity. To address this discrepancy, laboratory data were used to
adjust the Tanner stage where necessary. Values range from 1–5, with higher values indicating greater
maturity.

2.2.2 Voice measurements and features
Voice measurements were conducted according to a standard operating procedure based on the
recommendations by the Union of the European Phoniatrics [29] and as described by Berger et al. [30]. Voice
examination was carried out in a soundproof room by trained investigators. Recording and analysis of the
voice was done using the DiVas Software (XION medical, Berlin, Germany) and a self-calibrating USB-
microphone-headset that was kept at a constant distance of 30 cm from the children’s mouth. Participants
had two different tasks. For the analysis of the speaking voice, the task was to count from 21 to 30 at five
different sound pressure levels: quietest voice (quiet_I), conversational voice (conversation_II), presentation
voice (presentation_III), loudest voice (loud_IV), and quietest voice again (quiet_V) for a voice reset test. In
different conditions, children were instructed to speak as soft as possible, but to avoid whispering (I); to
speak as if in a normal conversation sitting across from each other (II); to speak as if in a classroom giving a
presentation (III), or to shout with their loudest voice, but without screaming (IV). Immediately after the
shouting task, the children were instructed to count as quietly as possible again (V). This voice reset test is
considered unremarkable if the values are comparable to those of the initial quiet measurement [30, 31]. The
second task consisted of sustaining a tone on “na” at a comfortable, medium pitch and volume. After a
maximal inhalation, the tone should be sustained for as long as possible. Afterwards, the tone should be
sustained once more for a few seconds, aiming for the sound to be as clear and pure as possible.
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For the analysis, we included the following parameters: fundamental frequency (f0; Hz) and intensity (dB(A)),
extracted from each condition of the first task and maximum phonation time (MPT) and Jitter, extracted from
the second task. Additionally, the highest pitch (f0max) and the lowest sound pressure level (SPLmin)
achievable with the singing voice were measured. The Dysphonia Severity Index (DSI) was calculated from
f0max, SPLmin, MPT, and jitter using a formula by Wuyst et al. [32]. The DSI ranges from + 5 (normal voice) to
− 5 (severely dysphonic voice). While normative DSI values are well established for adults [33], there are fewer
normative data available for children. Since children's voices change due to growth and puberty (voice
change), DSI values in children are highly variable and age dependent. Compared to adults, children often
show slightly lower DSI values. A total of 13 voice-derived features were used for analysis.

2.2.3 Behavioural difficulties/strengths
Behavioural data was extracted from the subscale hyperactivity/inattention (HI) from the parent-version of the
SDQ, a widely used instrument for measuring behaviour in children and adolescents [22]. The subscale HI
consists of five questions regarding hyperactivity/impulsivity (e.g. restless/overactive; fidgeting) and
inattention (e.g. easily distracted/concentration wanders) on a three-point Likert scale, resulting in scores
ranging from zero to ten.

2.4 Statistical Analysis
For statistical analysis we used two approaches. Linear mixed models were used for exploratory analysis and
to examine associations between variables. Machine learning was applied to assess the feasibility of making
predictions at the individual level. All analyses were conducted using Python (3.9), leveraging libraries such as
scikit-learn [34]. A complete list of libraries and their versions can be found in the public GitHub repository.

2.4.1 Linear mixed models
LMM analysis preprocessing included normalising the data by z-scaling all variables. For the main analysis,
voice features were set as independent variables, SDQ HI scores were set as dependent variables, and
covariates included age, sex, SES, and BMI-SDS. Additionally, we conducted sex-stratified analyses and a
robustness analysis including pubertal status as additional covariate. Fixed effects included the main
predictors of interest, i.e. voice features and covariates. To account for the repeated measurements, random
effects included a grouping variable (individual ID of the child to control for within-subject correlations) and a
random slope for the variable number of visits was added. LMMs were fitted using statsmodels and the
Powell method was used to optimise the likelihood function (1000 iterations). Models were evaluated by
calculating the variance of the fixed effects and residuals, reported as coefficients, standard errors,
confidence intervals, and p-values. The Benjamini-Hochberg procedure was applied to control for the False
Discovery Rate (FDR). Results with FDR-corrected p-values (q-values) < 0.05 were considered statistically
significant.

2.4.2 Machine learning
We conducted a series of ML analyses using Ridge Regression, that differed in the covariates or data used.
The main analysis included voice features along with age, sex, SES, BMI-SDS as covariates. To assess the
added predictive value of the voice features, we compared this model to one that included only the covariates.
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The difference in the MAEs was evaluated using the Nadeau and Bengio’s corrected t-test [35]. Additionally,
we trained a model using only voice features. We used permutation testing in all models to determine whether
the model’s performance was significantly better than chance. Finally, to analyse effects of sex and pubertal
status, we conducted a robustness check.

Prior to model fitting, all numerical features were standardized. When applicable, covariates were regressed
out of the voice features using linear confound removal. Hyperparameter tuning was performed using grid
search, evaluating three feature set sizes (top 5, 10, or all features) and six Ridge regression α values ranging
from 0.0001 to 10.0 on a logarithmic scale. Model evaluation included 20 iterations of a 5-fold nested cross-
validation. GroupKFold was used to ensure that repeated measurements from the same individual did not
appear in both training and test sets. Outer folds assessed model performance while inner folds handled
hyperparameter tuning. MAE, R2, and r were calculated to evaluate performance. Statistical significance was
assessed via permutation testing, comparing observed performance to a null distribution obtained by
randomly shuffling target labels. Results with p < 0.05 were considered statistically significant. Finally, we
calculated Shapley Additive Explanation (SHAP) values to identify which features had the greatest influence
on model predictions.

3 Results

3.1 Descriptive statistics 
Table 1 shows baseline study, demographic, and health characteristics from all included participants.
Descriptive statistics on voice features and the SDQ HI from all visits can be found in Table 2. The exact
sample sizes and number of features used for each model are in the LMM and ML Results sections, as these
varied with the model specifications.

Table 1 Baseline study, demographic and health characteristics
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Characteristic n (%) Mean/n (SD/%)

Sample  1460 (100) 1460 (100%)

Health cohort    1297 (88.8%)

Obesity cohort     163 (11.2%)

Number of visits 1460 (100) 1.70 (0.81)

1   736 (50.4%)

2   462 (31.6%)

3   231 (15.8%)

4   31 (2.1%)

Age (years) 1460 (100) 10.96 (3.02)

Sex 1460 (100)  

Female   716 (49.0%)

Male   744 (51.0%)

SES 1402 (96.03)  

Low   196 (14.0%)

Middle   856 (61.1%)

High   350 (24.9%)

BMI-SDS 1449 (99.25) 0.24 (1.23)

Health cohort   -0.03 (0.99)

Obesity cohort   2.41 (0.62)

Pubertal status 1205 (82.53) 2.20 (1.52)

Note. SES = socio-economic status; BMI-SDS = BMI-standard deviation score

Table 2 Characteristics of voice and SDQ HI variables (all visits)
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Characteristic n Mean (SD) Range

SDQ       

HI 2418 3.06 (2.47) 0.00–10.00

Voice features      

f0_quiet_I 2418 186.67 (43.63) 80.39–347.03

f0_conversation_II 2418 204.39 (43.62)   89.04–367.50  

f0_presentation_III 2417 227.59 (47.56)   87.99–374.36  

f0_loud_IV 2411 296.60 (55.73)   124.24–425.38  

f0_quiet_V 2370 198.23 (46.78)   90.30–371.00  

spl_ quiet_I 2418 51.46 (3.17)   41.62–65.14  

spl_ conversation_II 2418 58.93 (3.29)   48.56–73.56  

spl_ presentation_III 2417 65.88 (4.16)   54.41–86.86  

spl_ loud_IV 2411 81.47 (6.30)   48.45–102.82  

spl_ quiet_V 2370 54.06 (3.53)   43.85–82.51 

Jitter 2357 1.89 (3.49)   0.13–42.65

MPT 2357 13.05 (5.01)   1.59–36.32

DSI 2357 1.77 (4.42) -46.74–10.03

Note. SDQ = Strengths and Difficulties Questionnaire; HI = subscale hyperactivity/inattention; f0 =
fundamental frequency (Hz); spl = sound pressure level (intensity; dB(A); MPT = maximum phonation time;
DSI = dysphonia-severity-index 

3.2 Correlation analysis: relevant covariates
Covariates included age, sex, SES, BMI-SDS and pubertal status. They were selected based on previously
reported associations with the SDQ [36, 37] or voice features [38], and the results of a Spearman-Rho
correlation analysis (see Figure 1). To handle multicollinearity, highly correlated predictors (r > 0.8) were not
analysed in the same LMM model; therefore, age and pubertal status were analysed in separate models. 

3.3 LMM

3.3.1 LMM: Main analysis
The main LMM analysis revealed that several voice variables were significantly associated with SDQ HI values
(Table 3). The total number of included values per voice feature (n) varied between 2370 and 2418, due to
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data availability for the different conditions. Including age, sex, SES and BMI-SDS as covariates, and
correcting for multiple testing, fundamental frequency (f0) in conditions 2–5 and voice intensity (spl) in all
conditions were found to be significantly associated with HI values. These associations indicated that higher
SDQ HI values corresponded with a voice that was used louder and at a higher pitch during the counting task.
The largest effects were detected in the voice reset test (quiet_V, speaking quiet again) for both f0 (β = 0.075,
q < 0.001) and intensity (β = 0.091, q < 0.001) (Figure 2). No significant effects were found for other voice
features, namely Jitter (β = 0.024, q = 0.104), MPT (β = -0.019, q = 0.332), and DSI (β = -0.022, q = 0.152). 

Table 3 Significant associations between SDQ HI and voice variables (linear mixed model)

SDQ  Voice feature n df_resid coef
(β)

se ci_lower ci_upper p q

HI f0_conversation_II 2418 2412 0.070 0.019 0.033 0.106 <
0.001

<
0.001

  f0_presentation_III 2417 2411 0.057 0.020 0.018 0.096 0.005 0.009

  f0_loud_IV 2411 2405 0.037 0.016 0.006 0.068 0.021 0.029

  f0_quiet_V 2370 2364 0.075 0.017 0.041 0.109 <
0.001

<
0.001

  spl_ quiet_I 2418 2412 0.070 0.016 0.038 0.101 <
0.001

<
0.001

  spl_
conversation_II

2418 2412 0.054 0.016 0.023 0.086 0.001 0.002

  spl_
presentation_III

2417 2411 0.037 0.016 0.006 0.068 0.018 0.026

  spl_ loud_IV 2411 2405 0.049 0.016 0.017 0.081 0.002 0.005

  spl_ quiet_V 2370 2364 0.091 0.016 0.059 0.123 <
0.001

<
0.001

Note. All models were adjusted for the covariates age, sex, SES, BMI-SDS; all models converged successfully;
degrees of freedom for all models are 9; SDQ HI = Strengths and Difficulties Questionnaire subscale
hyperactivity/inattention; f0 = fundamental frequency; spl = sound pressure level (intensity); df_resid =
degrees of freedom (residual); coef = coefficient; se = standard error; ci_lower/upper = confidence interval
(lower/upper bound); p/q = p-/q-value (FDR adjusted p-value)

The robustness analysis, which included puberty status instead of age, indicated stable main effects with an
overall consistent pattern of the results (see Online Resource 1.1). The results of the sex-stratified analysis
also demonstrated a similar pattern (see Online Resource 1.2). 

3.4 Machine Learning
The main analysis was performed using 2314 values per feature obtained from 1433 children. Averaged over
all repetitions and folds, the model including voice features and covariates (main model) showed an MAE of
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1.869, an R2 of 0.120 and an r of 0.356, revealing a moderate relationship between predicted and true SDQ HI
scores. Permutation testing (1000 iterations) confirmed significance (MAE (true) = 1.864, MAE (random) =
2.016 p < 0.001). Comparing the MAE’s from the main model to a model using only covariates (age, sex, SES,
BMI-SDS) revealed superior performance of the model including voice features (t = 1.868; p = 0.032).
Permutation testing (1000 iterations) for the model that used only voice features was significant (MAE (true)
= 1.982, MAE (random) = 2.015, p < 0.001), confirming that the model performed better than chance. 

Feature importance was assessed using SHAP, which estimates how much each feature contributes to the
model’s predictions. For the main analysis, age, SES and sex are the main predictors for SDQ HI (Figure 3).
Several voice features contributed meaningfully to the predictions. Especially the intensity values of the voice
reset test, i.e. spl_quiet_V, and the quiet_I condition seemed to be important voice features, aligning with the
results of the LMM. 

The results of the SHAP dot plot (Figure 4), showed that age and SES have the broadest spread, suggesting
relatively strong influences on the predicted outcome. Having a lower age or SES, and being male, increased
the predicted SDQ HI scores. Speaking at a higher intensity during the quiet conditions also increased the
predicted SDQ HI scores. Jitter had a small average effect on prediction but showed a relatively large
horizontal spread. This suggests that high Jitter values led to higher predicted SDQ HI scores. 

3.4.1 ML: Impact of pubertal status
A robustness analysis was performed using 1903 values per feature obtained from 1248 children. Results
confirmed that the models' predictions were reliable even when pubertal status was included as additional
covariate (MAE = 1.902; R2 = 0.124; r = 0.361). The result of the permutation test was significant (p < 0.001).
SHAP values verified that demographic variables (i.e. SES, sex, pubertal status, age) were still the most
important predictors of SDQ HI. The analysis reaffirmed the voice intensity during the quiet conditions, i.e.
spl_quiet_I/_V, as a moderately important predictor. 

3.4.2 ML: Sex-stratified analysis
Averaged MAE values from the main analysis were calculated and separated by sex (female: MAE = 1.749;
male: MAE = 1.974). A Mann–Whitney-U-Test revealed significant differences between boys and girls (U =
731192.0; p < 0.001) indicating better performance in girls. However, after z-standardizing the SDQ HI scores
within each sex, model performance was virtually identical for both groups (female: MAE = 0.751; male: MAE
= 0.778) indicating that the observed differences are attributable to distributional differences in SDQ HI, not
true sex-specific model effects.

Using two separate models the sex-stratified analysis of girls was performed using 1109 values per feature
obtained from 707 girls and 1205 values per feature from 726 boys. Sex-stratified analyses showed again
lower averaged MAE for girls (MAE = 1.746, R2 = 0.101, r = 0.337) compared to boys (MAE = 1.985, R2 = 0.083,
r = 0.306), with both models reaching statistical significance in permutation testing (p < 0.001). 



Page 11/23

Averaged absolute SHAP values indicated apparent sex-specific differences in predictive patterns, with
different voice features contributing to the prediction of SDQ HI in boys and girls (Figure 5). The model for
boys indicated that besides voice intensity (condition II, V) f0 in the quiet I condition appeared important in
predicting male SDQ HI. For the girls, voice intensity in the quiet conditions (I, V) seemed to be the most
important voice feature. 

To further examine potential sex-specific predictive effects of voice features, we included sex-by-voice feature
interaction terms in the main model. Although several sex-by-voice feature interactions were selected during
model fitting, residual analyses showed no statistically significant differences in model performance between
boys and girls. These results indicate that, despite apparent sex differences in feature importance, the
predictive value of voice features for SDQ HI is not sex-specific when controlling for general differences in
voice characteristics between boys and girls. Details are provided in Online Resource 2.

4 Discussion
To our knowledge, this is the first study to analyse the potential of voice markers in children and adolescents
for diagnostic purposes using machine learning in a large epidemiological sample. In LMM, we identified
voice pitch (f0) and intensity, to be positively associated with SDQ HI values over different voice tasks. Using
a ML approach, we found that voice features, along with age, sex, and SES, moderately predicted SDQ HI
scores. Our sex-stratified analyses showed that robust prediction can be achieved with mixed-sex samples, as
model performance was virtually identical for boys and girls after adjusting for variance. These findings
support the use of mixed-sex samples enabling larger and more representative data collection. Together, our
results provide a sound basis for further investigation of voice features as potential objective markers in the
diagnostic process of ADHD in youth.

LMMs showed that children with higher SDQ HI scores exhibited higher voice intensity across all conditions
and higher f0 values in conditions 2–5. This positive association indicated that children who showed more
hyperactive/inattentive behaviour also display altered voice characteristics in the form of a louder/higher
voice. Of note, the strongest effects were found in the voice reset test. This suggests that children with more
pronounced symptoms of hyperactivity/inattention might find it more difficult to speak quietly once they have
spoken normally/loudly. Our findings are consistent with previous studies suggesting that children with
symptoms of ADHD tend to show hyperfunctional vocal behaviour, e.g. speaking louder than controls [17, 18,
23]. In contrast to the results of Hamdan et al. [23] and Garcia-Real et al. [18], we found that f0 tended to be
higher, not lower, in children with higher SDQ HI scores. The positive correlation between f0 and intensity is
consistent with their physiological linkage, as both are influenced by vocal effort or subglottal pressure [39,
40]. Chronic vocal misuse, for example permanently speaking too loud or with increased pitch could lead to
dysphonia [41]. Within this phenomenon, vocal fold nodules (VFN) are the most common diagnosis [42].
Previous research showed that hyperactive behaviour might be an important risk factor for the development
of VFN [43]. These are consequences of prolonged mechanical strain on the vocal fold epithelium due to
increased tension and heightened subglottic pressure.

No significant associations were found between Jitter, MPT, or DSI and SDQ HI. Based on previous findings,
Jitter values seem to be higher in children with ADHD or dysphonia [18, 44]. In addition, MPT appears to be
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shorter in children with dysphonia in general or with VFN specifically [45]. There is currently no study linking
hyperfunctional/inattentive behaviour to the DSI, although this index is used to assist in the diagnosis of
dysphonia [46]. So far, only a few comprehensive normative values for the Dysphonia Severity Index (DSI)
exist for children and adolescents. Children tend to have lower DSI values than adults - for example, 7- to 9-
year-olds in Shanghai showed lower values than 18- to 23-year-olds [47]. Among Indian children, girls had
significantly higher DSI values (mean 3.8 vs. 2.9), whereas no sex differences were found in the Shanghai
cohort [48]. The DSI values we measured fall below this range, thus indicating a level that may suggest mild
pathological changes in the voice.

Our ML model moderately predicted SDQ HI scores using voice features and relevant covariates. Voice
features alone yielded significant predictive power and further enhanced model performance when combined
with covariates, suggesting a biologically plausible, independent contribution to the prediction of
hyperactivity/inattention symptoms. This aligns with previous studies describing the potential of voice
features as diagnostic markers, including psychiatric conditions [11, 49].

SHAP analyses highlighted that voice intensity in quiet conditions contributed meaningfully to the prediction,
again suggesting difficulty in modulating volume with more prominent symptoms [17, 18, 23]. While the Jitter
value appears to have minimal influence on the prediction, an examination of the SHAP dot plot revealed a
relatively large horizontal distribution of this feature. This indicated that high Jitter values resulted in
increased predicted HI values, which is in line with findings of previous studies [18, 44]. Jitter is an acoustic
index for variations in the fundamental frequency, measuring micro-variations in the periodic sound signal
[46]. Among other parameters, Jitter can be used to detect the presence of a voice disorder, where higher
values indicate greater variability or more irregularity in vocal fold vibration [46]. A study with 237 Egyptian
children aged 4 to 12 years aimed to establish a prototype database of normal acoustic parameters. The
mean jitter percentage was reported as 1.9% in boys and 1.6% in girls, with no significant sex differences
observed. The study also noted a decline in jitter percentage with increasing age [50]. A prior study suggested
alterations of Jitter in children with ADHD, possibly due to lower control stability of vocal folds, resulting in a
less periodic larynx vibration [18].

Although initial sex-stratified analyses suggested better performance of the ML model in girls, this was
attributable to lower variance in SDQ HI scores rather than true model differences. After adjusting for
variance, predictive accuracy was nearly identical across sexes. This is clinically encouraging, as girls—
despite being underdiagnosed—were not disadvantaged by voice-based models. While SHAP analyses in both
sex-stratified and interaction models revealed sex-specific feature contributions, residual analyses showed no
sex differences in model performance. This suggests that observed SHAP differences reflect normative sex-
based variation in voice characteristics, rather than distinct predictive mechanisms requiring sex-specific
models. Sex-specific models may therefore be unnecessary, though sex remains an important lens for
interpretation and validation. In summary, sex-stratified analyses suggests that moderate prediction can be
achieved using mixed-sex samples without disadvantaging either sex. In turn, this supports the use of large,
diverse samples to enhance generalizability and statistical power in future studies.

In line with earlier research [36, 38], our findings confirmed that key demographic variables such as age, sex,
and SES are associated with both SDQ HI scores and voice features. Including these covariates in our models
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significantly improved predictive performance, underscoring the importance of accounting for known
confounders when using voice-based prediction. This supports van Dellen’s [4] claim that predictions should
not rely solely on outcome markers, but must consider static, dynamic and contextual factors (e.g. familial,
social and cultural), that shape the clinical picture. Similarly, Tan and Benos [51] emphasise the need for ML
diagnostics to incorporate information that shapes a patient’s health outcome, including demographic
factors, to build accurate models that reflect the complexities of the real world.

4.1. Strengths and limitations
Strengths of the study include a highly standardised voice acquisition, thereby ensuring good data quality.
Limitations pertain to the limited set of voice features that were included in this analysis. While serial speech
(reciting number words) is a well-standardized task for children and adolescents, it does not reflect the
characteristics of everyday communication. Therefore, additional investigations using standardized texts
(e.g., the Rainbow Passage) and recordings of spontaneous speech are warranted in future studies.

5 Conclusion
Within the framework of precision psychiatry, the results of this study provide first insights into the
identification and potential use of voice markers in children and adolescents. Our results indicate the added
value of voice features to the mostly subjective evaluation of symptoms of hyperactivity/inattention and
stress the need of further investigating the potential of voice-based ML models to detect childhood
psychiatric disorders. Research on adults has already confirmed voice features as potential diagnostic
markers in psychiatric populations [52]. In adult ADHD, previous research has shown that vocal features,
including f0 and jitter, can be used to classify subtypes [53]. The prospect that paediatric voice features could
also be used as markers to support a more accurate diagnostic process remains to be explored but seems
promising. In summary, we identified voice markers with predictive value in the general population, warranting
further investigation in clinical samples.
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Figure 1

Correlation matrix of significant correlations after FDR-correction (Spearman’s Rho)

Note. Only statistically significant correlations (FDR-corrected p < 0.05) are displayed in the figure; SDQ HI =
Strengths and Difficulties Questionnaire subscale hyperactivity/inattention; f0 = fundamental frequency; spl =
sound pressure level (intensity); MPT = maximum phonation time; DSI = dysphonia-severity-index; SES =
socio-economic status; BMI_SDS = BMI-standard deviation score
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Figure 2

Scatterplot SDQ HI and f0/spl_quiet_V

Note.SDQ HI = Strengths and Difficulties Questionnaire subscale hyperactivity/inattention; f0 = fundamental
frequency; spl = sound pressure level (intensity); coef = coefficient; p/q = p-/q-value (FDR adjusted p-value)
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Figure 3

SHAP bar plot main analysis (Ridge Regression)

Note.SHAP = Shapley Additive Explanation; SES = socio-economic status
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Figure 4

SHAP dot plot main analyis (Ridge Regression)

Note.SHAP = Shapley Additive Explanation; SES = socio-economic status; MPT = Maximum phonation time;
DSI = Dysphonia-severity-index; BMI_SDS = BMI-standard deviation score
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Figure 5

SHAP bar plot sex-stratified analysis (Ridge Regression)

Note. a = Boys, b = Girls; SHAP = Shapley Additive Explanation; SES = socio-economic status
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