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The excitation-inhibition ratio is a key functional property of cortical microcircuits which changes throughout an 
individual’s lifespan. Adolescence is considered a critical period for maturation of excitation-inhibition ratio. This 
has primarily been observed in animal studies. However, there is limited human in vivo evidence for maturation of 
excitation-inhibition ratio at the individual level. Here, we developed an individualized in vivo marker of regional 
excitation-inhibition ratio in human adolescents, estimated using large-scale simulations of biophysical network 
models fitted to resting-state functional imaging data from both cross-sectional (n  =  752) and longitudinal 
(n = 149) cohorts. In both datasets, we found a widespread decrease in excitation-inhibition ratio in association 
areas, paralleled by an increase or lack of change in sensorimotor areas. This developmental pattern was aligned 
with multiscale markers of sensorimotor-association differentiation. Although our main findings were robust 
across alternative modeling configurations, we observed local variations, highlighting the importance of method-
ological choices for future studies.

INTRODUCTION
The vast repertoire of cortical functions emerges from a careful tun-
ing of the interactions between excitatory and inhibitory neurons 
in microcircuits embedded in the structural scaffolding of the brain 
(1). Excitation and inhibition, mainly transmitted via glutamate 
and γ-aminobutyric acid (GABA), respectively, are inseparable and 

balanced, i.e., the inhibition generated in the cortical microcircuits is 
proportional to the local and incoming excitation (2). This phenome-
non has been observed during both responses to external stimuli (3–
5) and spontaneous cortical activity (4, 6). The excitation-inhibition 
(E-I) balance is proposed to be essential for central aspects of cortical 
functioning, including the dynamic stability of activity (7), efficient 
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coding of the information (8), sharp tuning of sensory stimuli (2), and 
generation of synchronous cortical oscillations in gamma and beta 
ranges (2, 6, 9, 10). Conversely, disturbed E-I balance can lead to corti-
cal circuit dysfunctioning and is hypothesized as a key pathophysio-
logical mechanism under various neuropsychiatric conditions such as 
schizophrenia, autism spectrum disorder, and epilepsy (11–15).

Adolescence is a critical developmental period with substantial 
changes in the brain including maturation of the E-I ratio (16–18). 
During this period, several important changes occur in the architec-
ture and function of excitatory and inhibitory neurons and synapses, 
which together are suggested to lead to a recalibration of the E-I ratio 
(16). For instance, postmortem histology of adolescent brains has 
shown a pruning of excitatory synapses within the prefrontal cortex 
in rats (19, 20), nonhuman primates (21, 22), and humans (23–25). In 
addition, postmortem transcriptomic studies of the prefrontal cortex 
in animals and humans have indicated marked changes in the expres-
sion of genes involved in inhibitory neurons and GABAergic signal-
ing, including parvalbumin (9, 26, 27) and GABA type A (GABAA) 
receptor subunits (28–31). These transcriptomic changes are accom-
panied by the maturation of inhibitory function with stronger and 
shorter inhibitory postsynaptic currents, as observed in the prefrontal 
cortex of nonhuman primates (9, 30), overall indicating a relative in-
crease in inhibitory synaptic transmission in this area (16, 32).

Currently available evidence on the in vivo maturation of the E-I 
ratio in humans is limited, as the invasive methods used in animal 
studies are not feasible in humans. However, in vivo proxies of the 
E-I ratio have been proposed, relying on its putative macroscale 
functional consequences captured in functional imaging (33, 34) and 
electrophysiology (35–37) or through biochemical quantification of 
glutamatergic or GABAergic neurotransmitters using magnetic reso-
nance spectroscopy (38–40). Such approaches are informative but 
lack a certain level of mechanistic insight and detail that is observed 
with, for example, direct measurement of the excitatory and inhibi-
tory input currents as done in animal research. Furthermore, studies 
on the development of the E-I ratio are often focused on selected ar-
eas, primarily within the prefrontal cortex, and the knowledge on the 
regional patterns of E-I ratio maturation across the whole cerebral 
cortex is limited. Biophysical network modeling (BNM) of the brain 
is a promising computational technique that can bridge different 
scales of investigation at a whole-cortical level. It provides a tool to 
noninvasively derive mechanistic inferences about a hidden brain 
feature at the microscale, such as the E-I ratio, based on the observed 
(empirical) in vivo data at the macroscale and has provided valuable 
insights into brain (dys)function (41–47). In this approach, the dy-
namic spontaneous activity of brain areas is simulated using biologi-
cally realistic models that are informed by, for instance, the blood 
oxygen level–dependent (BOLD) signal measured during resting-
state functional magnetic resonance imaging (rs-fMRI) (48–51).

In this study, we aimed to investigate the in vivo maturation of the 
regional E-I ratio in adolescents at an individual level. To achieve this, 
we applied the BNM approach on two independent cross-sectional 
and longitudinal neuroimaging datasets from the Philadelphia Neuro-
developmental Cohort (PNC) and the IMAGEN study (52, 53). We 
performed large-scale simulations of individualized BNMs (44, 54, 55), 
in which models were informed by structural connectivity (SC) and 
functional imaging data of each subject. The subject-level precision 
of these models allowed for mapping the estimated E-I ratio specifi-
cally in each individual using simulations that best represented 
their empirical data and furthermore enabled studying within-subject 

maturation longitudinally. This extended a previous study that used 
the BNM approach to study E-I ratio development in the PNC dataset 
at the level of age groups (56). We demonstrated replicable effects 
across the two datasets, indicating cross-sectional and longitudi-
nal age-related increases in relative inhibition in the association ar-
eas and no significant changes or relative increases in excitation in 
the sensorimotor areas. This pattern of the E-I ratio maturation was 
aligned with the proposed sensorimotor-association axis of the cor-
tical neurodevelopment (18). Subsequently, given that the simulation 
results may be affected by various modeling and analytical choices 
(57–59) or might be confounded by the variability of underlying 
structural connectome, as well as the noise within the simulations 
and parameter optimization, we extensively assessed and demon-
strated the robustness of our simulation-based findings against 
these nuisances. Last, we contrasted our marker of the E-I ratio 
with alternative, previously used BNM-based markers, highlighting 
methodological and conceptual considerations regarding their usage 
and interpretation.

RESULTS
Overview
We included 752 adolescents from the cross-sectional PNC dataset 
[409 female; mean age: 15.3 ± 2.4 (10 to 19) years] (52) and 149 
participants from the longitudinal IMAGEN study (72 female; 
mean age: 14.4 ± 0.4 years at the baseline and 18.9 ± 0.5 years at 
follow-up) (53). Subject/session diffusion-weighted imaging (DWI) 
and rs-fMRI data were used to generate individual matrices of 
(i) structural connectome based on the density of white matter stream-
lines, (ii) functional connectivity (FC) matrix as the correlation of 
the BOLD signals, and (iii) functional connectivity dynamics (FCD) 
matrix as a measure of how the FC dynamically evolves through 
sliding windows of time during the scan across 100 cortical areas 
(60). Hereafter, we refer to FC and FCD matrices derived from the 
imaging data as empirical FC and FCD to distinguish them from 
simulated FC and FCD.

Next, we performed individualized BNM simulations and parame-
ter optimizations for each subject/session to estimate their regional 
measures of the E-I ratio based on their in vivo imaging data (Fig. 1). 
We applied the reduced Wong-Wang model (61), which models each 
node as coupled excitatory and inhibitory neuronal pools, where the ex-
citatory neuronal pools of different nodes are interconnected through 
the individual-specific SC. The model was controlled by global and 
regional free parameters, which were fit to the empirical resting-state 
functional data of the target subject/session using the covariance matrix 
adaptation-evolution strategy (CMA-ES) optimization algorithm (62–
64). This involved running a maximum of 33,600 simulations per sub-
ject/session using an efficient implementation of BNM simulations on 
graphical processing units (GPUs; https://cubnm.readthedocs.io). The 
model parameters included a global parameter G , which scales the 
strength of interregional coupling, in addition to regional parameters 
wEE
i

 , wEI
i

 , and wIE
i

 , which characterize the connectivity weights between 
excitatory and inhibitory neuronal pools within each node. Motivated 
by recent developments of this model (65, 66), we let wEE

i
 and wEI

i
 to 

vary across nodes, i.e., they were computed, independent of each other, 
through weighted combinations of six fixed biological maps that repre-
sent microstructural, functional, transcriptomic, and neurochemical 
heterogeneity of the human cerebral cortex. These maps were ob-
tained from independent healthy adult samples and included average 
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T1-weighted/T2-weighted ratio (T1w/T2w), average cortical thickness, 
principal gradient of FC (FC G1), principal axis of gene expression 
(Gene PC1), and average N-methyl-d-aspartate (NMDA) and GABA 
type A/Bz (GABAA/BZ) receptor positron emission tomography maps 
(fig. S1) (67–75). Furthermore, in each simulation, wIE

i
 was determined 

on the basis of an analytical-numerical feedback inhibition control 
(FIC) algorithm, which aimed to maintain the firing rate of excitatory 
neurons within a biologically plausible range of 3 Hz (61, 66). Then, 
from the optimal simulations of each subject/session, we extracted the 
in silico input current to the excitatory neuron of each node IE

i
 , aver-

aged across simulation time, which resulted in individual-specific ⟨IE
i
⟩ 

maps. The ⟨IE
i
⟩ values reflect in silico estimates of the regional E-I ratio, 

defined as the relative level of excitation compared to the relative level 
of inhibition exerted onto excitatory neurons, given that IE

i
 results from 

the combination of excitatory input currents to each node (from itself 
and from the excitatory neurons of the other nodes through the SC) 
balanced by local inhibitory currents. Therefore, an increase in ⟨IE

i
⟩ can 

be interpreted as a relative increase in excitation or decrease in inhibi-
tion, i.e., an increase in E-I ratio, within a model region.

Cross-sectional age-related variation of the E-I ratio
Then, we studied cross-sectional age-related variation of the E-I ra-
tio during adolescence in the PNC dataset. The individualized opti-
mal simulations of the PNC dataset showed a goodness of fit of 
0.259 ± 0.101 to the empirical data (fig. S2). On the basis of these 
simulations, we found widespread significant age-related decreases 
in E-I ratio in association areas within the frontal, parietal, and tem-
poral lobes, in contrast to its age-related increases in visual and 

Fig. 1. Overview. Individualized BNM simulation-optimization (A to C) was performed to derive the subject/session–specific regional measures of the E-I ratio, defined as 
time-averaged in silico input current to the excitatory neurons, ⟨IE

i
⟩ (D). The model consists of coupled excitatory and inhibitory neuronal pools in each node, where the 

excitatory neuronal pools of brain nodes are interconnected through the structural connectome of the given subject/session [(A), left]. The model is controlled by a 
global parameter G , which adjusts interregional coupling, in addition to regional parameters wEE

i
 , wEI

i
 , and w IE

i
 , which characterize the connection weights between excit-

atory and inhibitory neuronal pools within each node. In each simulation, G , wEE

i
 , and wEI

i
 are set by the optimizer, while w IE

i
 is determined on the basis of the FIC algorithm 

(B). The covariance matrix adaptation-evolution strategy was used to optimize model parameters given empirical data of a subject/session (C). The optimization goal was 
to maximize the goodness of fit by tuning 15 free parameters, including G , as well as bias and coefficient terms used to determine wEE

i
 and wEI

i
 based on six fixed biological 

cortical maps (fig. S1). The goodness of fit of each simulation to the empirical functional data [(A), right] was assessed as the correlation of FC matrices subtracted by their 
absolute mean difference and the KS distance of FCD matrices derived from the simulated or empirical BOLD signal. After completion of two optimization runs, the opti-
mal simulation with the best goodness of fit to the empirical functional data of the target subject/session was selected (C). Last, the in silico input current to the excit-
atory neuron of each node IE

i
 was averaged across simulation time, resulting in an E-I ratio map for each subject/session (D).
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sensorimotor areas as well as the left posterior insula, controlled for 
goodness of fit, sex, and in-scanner rs-fMRI motion and adjusted 
for multiple comparisons at a false discovery rate (FDR) of 5% 
(Fig. 2A). The effect sizes across these regions, partial correlation of 
age and E-I ratio controlled for the confounds, ranged between 
−0.255 and 0.156. We then assessed the within-sample stability of 
the age effects across 100 subsamples of the data, each including half 
of the total sample with 376 subjects. The unthresholded age effects 
on the E-I ratio across all pairs of subsamples showed a mean cor-
relation coefficient of 0.863  ±  0.047, indicating the high within-
sample stability of the observed age effects (Fig.  2C). Of note, 
assessing maturational differences of the E-I ratio between males 
and females, we found no FDR-corrected significant age-by-sex in-
teractions.

Longitudinal changes of the E-I ratio
To extend and assess the replicability of our findings in the cross-
sectional PNC study, we next investigated the longitudinal matura-
tion of the E-I ratio in the independent IMAGEN dataset, including 
149 participants assessed at the ages of 14 and 19 years. The indi-
vidualized optimal simulations in the IMAGEN had mean goodness-
of-fit values of 0.266 ± 0.102 at the baseline and 0.231 ± 0.113 at the 
follow-up session (fig.  S3). Within these simulations, we found a 
significant longitudinal age-related decrease in E-I ratio in wide-
spread association areas within the frontal, parietal, and temporal 
lobes and a significant increase in visual areas, controlled for good-
ness of fit, sex, in-scanner rs-fMRI motion, and site and adjusted for 
multiple comparisons at an FDR of 5% (Fig.  3A). The effect sizes 
across these regions, calculated as the standardized mean difference 

Fig. 2. Cross-sectional effect of age on the E-I ratio during adolescence. (A) Effect of age on the E-I ratio, showing its significant age-related decrease (blue) and in-
crease (red) during adolescence in the PNC dataset, after removing outliers and controlling for the goodness of fit, sex, and in-scanner rs-fMRI motion, corrected for 
multiple comparisons using FDR. (B) Unthresholded map of the effect of age on the E-I ratio. (C) Distribution of correlation coefficients between E-I ratio age effect maps 
of all pairs of subsamples across 100 half-split subsamples of the dataset.

Fig. 3. Longitudinal effect of age on the E-I ratio during adolescence. (A) Longitudinal effect of age on the E-I ratio, showing its significant decrease (blue) and increase 
(red) through adolescence, using a mixed-effects model with random intercepts for each subject, after removing outliers and controlling for goodness of fit, sex, in-
scanner rs-fMRI motion, and site, corrected for multiple comparisons using FDR. (B) Unthresholded effect of age on the E-I ratio. (C) Distribution of correlation coefficients 
between E-I ratio age effect maps of all pairs of subsamples across 100 half-split subsamples of the dataset. (D) Conjunction of regions showing significant decreases in 
E-I ratio associated with age in the PNC and IMAGEN datasets. (E) Spatial coalignment [Pearson correlation (r) or cosine similarity (cos)] of longitudinal effects of age on 
the E-I ratio in IMAGEN with a cross-sectional effect of age on the E-I ratio in PNC.
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of the baseline to follow-up session in E-I ratio controlled for the 
confounds, ranged between −0.299 and 0.229. We next assessed 
the within-sample stability of age effects using 100 subsamples of the 
IMAGEN data, each including half of the total sample with 74 sub-
jects. This resulted in a mean correlation of r = 0.750 ± 0.108 be-
tween the E-I ratio age effect maps across all pairs of subsamples 
(Fig. 3C). Furthermore, we found no FDR-corrected significant age-
by-sex interactions, yielding no evidence for sex differences in the 
maturation of the E-I ratio. Of note, because the quality of the trac-
tograms in the baseline session of the IMAGEN dataset was lower, in 
these simulations, we used the SC of the follow-up session in the 
models of both sessions. However, in a subset of subjects with ade-
quate quality of tractograms in both baseline and follow-up sessions 
(n = 110; 52 female), using models with session-specific SCs resulted 
in largely similar effects of age on the E-I ratio (r = 0.779, Pspin < 
0.001; cos = 0.841, Pspin < 0.001; fig. S4).

We next assessed the similarity of cross-sectional and longitudinal 
age-related variation of the E-I ratio observed in the two datasets. 
Conjunction of regions with significant age effects on the E-I ratio in 
the PNC and IMAGEN datasets revealed 33 regions in the associa-
tion cortices showing a significant decrease in E-I ratio, whereas no 
region showed a significant replicable age-related increase in E-I ratio 
(Fig. 3D). The mean E-I ratio across these association regions, after 
regressing out the effects of confounds, showed a correlation coeffi-
cient of r = −0.232 with age in the PNC (T = −6.64, P < 0.001) and 
a standardized mean difference of −0.312 between the sessions in 
IMAGEN (T = −4.17, P < 0.001; fig. S5). Furthermore, the unthres-
holded map of longitudinal effects of age on the E-I ratio in IMAGEN 
(Fig.  3B) was significantly coaligned (r  =  0.630, Pspin  <  0.001; 
cos = 0.782, Pspin < 0.001; Fig. 3E) with the map of cross-sectional 
effects of age on the E-I ratio observed in PNC (Fig. 2B). Therefore, 
overall, across the two datasets, we observed replicable cross-sectional 
and longitudinal effects, indicating a developmental decrease in E-I 
ratio in the association areas in contrast to a lack of significant chang-
es or an increase in E-I ratio in sensorimotor areas.

The neurodevelopmental pattern of the E-I ratio coaligns 
with the sensorimotor-association axis of 
cortical organization
Having observed differential effects of age on the E-I ratio across 
cortical areas, we next sought to investigate the embedding of this 
spatial neurodevelopmental pattern across different domains of cor-
tical organization as well as developmental transcriptomics. We first 
studied the spatial coalignment of the maps of E-I ratio maturation 
with a previously proposed sensorimotor-association axis of cortical 
neurodevelopment and the multimodal cortical features it was com-
posed of (fig. S6 and table S1) (18). The maps of E-I maturation ob-
served in both datasets were significantly (Pspin < 0.05) correlated 
with the sensorimotor-association axis map (PNC: r = −0.617; 
IMAGEN: r = −0.607) as well as several of its components, notably 
including FC G1 (PNC: r  =  −0.691; IMAGEN: r  =  −0.641) and 
T1w/T2w (PNC: r  =  0.437; IMAGEN: r  =  0.548;  Fig.  4A and 
fig. S7A). Next, comparing the maps of E-I maturation across seven 
canonical resting-state networks (76), in both datasets, we observed 
more negative age effects in the default mode, limbic and frontopa-
rietal networks compared to the somatomotor and visual networks 
(Fig. 4B and fig. S7B). These findings indicated the coalignment of 
the E-I ratio maturational pattern with the sensorimotor-association 

axis of the cortex with a higher age-related relative increase in inhi-
bition toward the association areas.

Last, we performed developmental transcriptomics enrichment 
analysis of the E-I ratio maturation maps. Using partial least squares 
regression with the gene expression maps obtained from the Allen 
Human Brain Atlas (71,  73), we identified the top 500 genes ex-
pressed higher toward the negative and positive ends of the E-I ratio 
maturation maps. Next, we investigated the developmental enrich-
ment of the two sets of genes using specific expression analysis of the 
BrainSpan dataset (77), comparing them against null sets of genes 
expressed in alignment with spun surrogates of the E-I ratio matura-
tion maps (1000 permutations). We found the genes expressed to-
ward the negative ends of the E-I ratio maturation maps to be 
enriched in later stages of development, significantly during neonatal 
to adolescence (PNC) or early childhood (IMAGEN) stages, in con-
trast to the genes expressed toward the positive ends of the E-I ratio 
maturation maps that were enriched in earlier fetal stages of develop-
ment, although not significantly (Fig. 4D and fig. S7D).

Sensitivity analyses
Thus far, we observed consistent age effects in the adolescent matura-
tion of the E-I ratio in two independent cross-sectional and longitudi-
nal datasets across a sensorimotor-association axis by using simulations 
of individualized BNMs. However, these simulation-based findings 
may be sensitive to various modeling and analytical choices (57–59) as 
well as confounding effects of the underlying structural connectome or 
noise. Therefore, we next assessed the sensitivity of the E-I ratio and its 
age-related changes to such nuisances, including the effects of the in-
terindividual variability of SC, modeling configurations, and the ran-
domness within the optimizer and the simulations. To reduce the 
computational costs, we limited these analyses to a random subsample 
of 200 subjects from the PNC dataset. Hence, the effect of age on the 
E-I ratio in the “main run” was recalculated in this subsample for the 
comparisons with the alternative runs (Fig. 5A).
Interindividual variability of structural connectome
Using subject-specific SCs in the main analyses enabled modeling of 
brain function within an individualized structural scaffold, which 
better represents each subject. However, this potentially introduces 
interindividual variability of SCs as a source of variability in E-I ra-
tio, particularly given that IE

i
 is directly related to the SC in the mod-

el  Eq.  1. As a result, the associations of age with model-derived 
features may be confounded by age-related variation of trivial fea-
tures of SC, such as the node-wise strength. However, the effect of 
age on the E-I ratio was robust to controlling for the node-wise SC 
strength as an additional confound (r  =  0.960, Pspin  <  0.001; 
cos = 0.977, Pspin < 0.001; fig. S8A). Furthermore, when SC vari-
ability was eliminated by using an identical template SC in the BNM 
simulations of all the subjects, the effect of age on the E-I ratio was 
coaligned with the effects observed in the main run (r  =  0.485, 
Pspin < 0.001; cos = 0.440, Pspin < 0.001; Fig. 5B and fig. S8B) despite 
a poor average test-retest reliability of E-I ratio compared to the 
main run {intraclass correlation coefficient (ICC): 0.319  ±  0.165; 
range: [−0.179, 0.632]; fig. S8B}.
Parcellation
Using an alternative Schaefer parcellation with higher granularity of 
200 nodes (60), the effect of age on the E-I ratio was largely consis-
tent with the main run based on 100 nodes (r = 0.596, Pspin < 0.001; 
cos = 0.615, Pspin < 0.001; Fig. 5C and fig. S9A), yet we observed the 
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poor average test-retest reliability of E-I ratio compared to the main 
run {ICC: 0.356 ± 0.186; range: [−0.075, 0.836]; fig. S9B}.
Heterogeneity of regional parameters
We found consistent effects of age on the E-I ratio when alternative 
subsets of the six biological maps were used to determine the hetero-
geneity of regional parameters wEE

i
 and wEI

i
 (Fig. 5D and fig. S10): 

(i) using only T1w/T2w and FC G1 maps (r = 0.776, Pspin < 0.001; 
cos = 0.863, Pspin < 0.001), (ii) using only NMDA and GABAA/BZ 
maps (r = 0.331, Pspin < 0.001; cos = 0.630, Pspin < 0.001), and (iii) 
using T1w/T2w, FC G1, NMDA, and GABAA/BZ maps (r =  0.853, 
Pspin < 0.001; cos = 0.916, Pspin < 0.001). Notably, the average ICC of 
E-I ratio compared to the main run was respectively 0.698 ± 0.108 
{range: [0.183, 0.881]}, 0.530  ±  0.133 {range: [0.203, 0.795]}, and 
0.819 ± 0.068 {range: [0.483, 0.931]}, indicating its moderate to good 
average test-retest reliability when using alternative sets of maps.

Next, we asked to what extent the spatial pattern of E-I ratio mat-
uration is influenced by the spatial pattern of the underlying hetero-
geneity maps. To investigate this, we performed an alternative run 
by using a set of six null maps, generated by random spinning of the 

six original maps on the cortical surface. In this null run, we ob-
served weak and significant correlation of the E-I maturation map 
with two of the six null maps but none of the original maps. Con-
versely, the E-I maturation map of the main run based on the origi-
nal maps was correlated more strongly with five of six original maps 
but only one of the null maps. This indicates that the choice of het-
erogeneity maps can to some extent influence the findings, although 
the nature of this influence is not trivial (fig. S11A).

This raises the question of whether one could use map-free al-
ternative models that are free of this influence. To address this, we 
tested two map-free models including (i) a “homogeneous” model 
(three free parameters), which assumes the homogeneity of region-
al parameters and led to a significant drop of the goodness of fit by 
an average of −0.113  ±  0.062 (fig.  S11B), and (ii) a “node-based 
heterogeneous” model (201 free parameters), which allows regional 
parameters of the nodes to vary independently as separate free pa-
rameters. Using the same number of simulations as the main run to 
fit this model, we observed a significant drop of the goodness of fit 
by an average of −0.059 ± 0.069 (fig. S11B), likely due to a reduced 

Fig. 4. Embedding of the E-I developmental pattern in the PNC dataset along the sensorimotor-association axis. (A) Spatial correlation of the E-I ratio maturation 
map in the PNC dataset with the maps of the sensorimotor-association cortical axis based on Sydnor et al. (18) (fig. S6). Colored diamonds show statistically significant 
(Pspin < 0.05) positive (red) and negative (blue) spatial correlations. (B) Distribution of the E-I ratio maturation map across the canonical resting-state networks (F = 13.85, 
Pspin < 0.001). Post hoc tests (Bonferroni-corrected) showed significantly more positive age effects in the visual (VIS) and somatomotor (SMN) compared to the limbic (LIM), 
frontoparietal (FPN), and default mode networks (DMN), in addition to more positive age effects in the dorsal attention network (DAN) compared to DMN. (C) Bottom: 
Mean expression of the top 500 genes associated with the E-I ratio maturation map, split into sets of negatively associated (n = 187, blue) and positively associated 
(n = 313, red) genes. Top: Specific expression analysis of the two sets of genes across developmental stages in the cortex. The y axis shows the negative log of FDR-
corrected P values. Asterisks denote significantly enriched developmental stages compared to null genes based on spin surrogate maps (1000 permutations) and after 
FDR adjustment. SA, sensorimotor association; Evo., evolutionary; CMR, cerebral metabolic rate; Glu., glucose; CBF, cerebral blood flow; NeuroSynth PC1, principal compo-
nent of NeuroSynth meta-analytical maps; LTC G1, principal gradient of laminar thickness covariance.
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rate of optimizer convergence (fig. S11C). This indicates the need 
for a much larger number of simulations to fit this complex model, 
which would be infeasible in our current, subject-level BNM ap-
proach. Thus, we argue that although these map-free alternatives 
can avoid the influence of maps, they either are too simplistic and 
lack enough biological detail (“homogeneous”) or are too complex 
and difficult to fit at this scale (“node-based heterogeneous”), both 
leading to a worse model fit. This in turn highlights the necessity of 
an intermediate feasible solution which is to induce the constrained 
heterogeneity of the regional parameters based on a set of biological 
maps. The effect of age on the E-I ratio based on these map-free 
models is reported in fig. S11D for the interested reader, although 
we refrain from interpreting these findings given the aforemen-
tioned issues of these models.
Inclusion of interhemispheric connections in the cost function
When interhemispheric connections were considered in the cost 
function, the effect of age on the E-I ratio was consistent with the 
main run (r = 0.734, Pspin < 0.001; cos = 0.532, Pspin < 0.001; Fig. 5E 
and fig. S12), yet the E-I ratio showed poor average test-retest reli-
ability compared to the main run {ICC: 0.484  ±  0.128; range: 
[0.071, 0.743]}.

Conduction velocity
Next, we assessed the potential impact of interregional conduction 
delay at the individual level by repeating the optimal simulations 
while adding conduction delay between model regions informed by 
the subject-specific tractograms. We calculated the ICC of E-I ratio 
between optimal simulations with and without conduction delay 
and found its good test-retest reliability with a mean of 0.977 ± 0.017 
using a velocity of 1 m/s to 0.997 ± 0.002 using a velocity of 6 m/s 
(fig. S13).
Optimization random seed
Within the parameter space, multiple local optima could exist that 
feature different E-I ratio values. To assess this, we calculated the 
node-wise ICC of E-I ratio across the optimal points obtained from 
the two CMA-ES runs of each subject. We found a mean ICC of 
0.946 ± 0.021 {range: [0.874 to 0.982]} across nodes, indicating the 
good test-retest reliability of E-I ratio across alternative optima 
(fig. S14). Furthermore, in a ground truth recovery analysis, we fit-
ted the model to synthetic functional data with known parameters 
and regional E-I ratio values. The recovered E-I ratio values showed 
a Pearson correlation of 0.977 (P < 0.001) and an ICC of 0.948 with 
the ground truth (fig. S15). Together, these findings indicate a low 

Fig. 5. Sensitivity analyses. The unthresholded effect of age on the E-I ratio observed in a random subsample of the PNC dataset (n = 200) using the default configurations 
(A) compared to age effects observed using alternative configurations, including the following: (B) using a fixed template SC based on the MICs dataset, (C) definition of 
nodes based on a Schaefer parcellation with higher granularity of 200 nodes, (D) using alternative subsets of biological maps to determine the heterogeneity of regional 
parameters, (E) including the interhemispheric connections in the goodness of fit, and (F) using an alternative Gaussian noise seed. In (B) to (F), the statistics indicate spatial 
coalignment [Pearson correlation (r) or cosine similarity (cos)] of each map with the E-I ratio maturation map observed using the default configurations (A). (G) Pooled partial 
correlation of age with the E-I ratio (controlled for goodness of fit, sex, and in-scanner rs-fMRI motion) across (A) to (F) based on random-effects meta-analyses.
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risk of optimizers’ convergence to different local optima with re-
spect to the E-I ratio.
Gaussian noise random sequence
We next investigated the impact of the random sequence (seed) of 
Gaussian noise introduced into the simulations by performing 
three analyses:

1) Ground truth recovery with different noise seeds: When using 
a different noise random seed than the one used in the ground truth 
simulation, the recovery fits decreased (0.811 ± 0.018, across 50 al-
ternative seeds), with a lower Pearson correlation (0.672 ± 0.132) 
and ICC (0.339 ± 0.150) between the recovered and ground truth 
E-I ratio values, compared to when the same noise seed was used 
(fig. S15).

2) Test-retest reliability of E-I ratio in the optimal simulations 
across different noise seeds: We repeated the optimal simulations of 
each subject obtained in the main run and based on the default 
noise seed, with 50 alternative noise seeds. The median node-wise 
ICC of E-I ratio between the simulations using the original versus 
alternative noise seeds had an average of 0.810  ±  0.100 {range: 
[0.368 to 0.929]} across regions (fig. S16).

3) Comparing optimization runs performed using the default versus 
alternative noise seed: Running the full simulation-optimization pro-
cess with a different Gaussian noise random sequence than the main 
run, we observed the poor average test-retest reliability of regional E-I 
ratio estimates {ICC: 0.471 ± 0.172; range: [−0.149, 0.771]}, indicating 
a notable effect of noise sequence on individual estimates. Nevertheless, 
the age-related E-I ratio effects remained largely consistent (r = 0.537, 
Pspin < 0.001; cos = 0.755, Pspin < 0.001; Fig. 5F and fig. S17). Further-
more, when age effects were assessed on the basis of the average E-I ra-
tio values across the two runs using the default and alternative random 
seeds (fig. S17D), they remained highly consistent with the effects ob-
served in either run separately (r = 0.844, Pspin < 0.001; cos = 0.912, 
Pspin < 0.001 for the main run; r = 0.854, Pspin < 0.001; cos = 0.930, 
Pspin < 0.001 for the alternative run).

Together, these findings suggest that while the Gaussian noise 
random sequence influences simulation outcomes, the observed ef-
fects of age on the E-I ratio remain largely robust to this influence.
Most consistent effects of age on the E-I ratio across 
alternative modeling configurations
Given the variability of the effects of age on the E-I ratio across 
the alternative models described above (Fig. 5, A to F), we next 
aimed to reconcile these findings and identify the most consistent 
effects of age on the E-I ratio across the different models. We per-
formed random-effects meta-analyses, at the level of each parcel, 
to pool the partial correlation of age with the E-I ratio observed 
across the main and alternative configurations. We found a sig-
nificant pooled age-related decrease in E-I ratio in association 
areas in frontal, parietal, and temporal lobes and its pooled in-
crease in sensorimotor areas (Fig. 5G). The heterogeneity of the 
observed effects differed across the cortex and was higher in the 
somatomotor and parietal regions compared to visual and frontal 
regions (fig. S18A).

Alternative BNM-based measures of the E-I ratio
In vivo estimation of the E-I ratio based on BNMs has been the aim 
of several previous studies using this or similar models (47, 56, 78–
80). Yet, there has been no consensus on the BNM-based measures 
of the E-I ratio and various measures have been proposed and used 
across studies. Here, we present our findings regarding alternative 

BNM-based measures of the E-I ratio used in the previous literature 
and highlight some considerations regarding their usage.

First, the optimal model parameters have been commonly used 
as measures of the E-I ratio (47, 78–80). Variation of these parame-
ters can be interpreted as a shift of the ratio toward higher excitation 
(e.g., increase in G or wEE ) or higher inhibition (e.g., increase in wEI 
or wIE ). However, in a multidimensional model in which these pa-
rameters can simultaneously covary and may be degenerate, the in-
terpretation of their variations is not straightforward. Across optimal 
simulations of subjects in the PNC dataset, we found significant as-
sociations between optimal parameters, such as a negative associa-
tion of wEI and wIE , indicating that lower excitatory-to-inhibitory 
connection weights are accompanied by (compensatory) higher 
inhibitory-to-excitatory connection weights (Fig. 6A). These associa-
tions were also reflected in the effects of age on the parameters (Fig. 6B). 
For example, there was an inverse correlation between the unthresh-
olded effects of age on wEI

i
 and wIE

i
 (r = −0.706, Pspin < 0.001). The 

observed covariance between model parameters and their age effects 
indicates that these age effects should not be interpreted in isolation, 
and on the basis of these data, the net effect of age on the E-I ratio 
remains ambiguous.

In our study, as a solution to this problem of degeneracy be-
tween model parameters, we focused on a state variable of model 
nodes within the optimal simulations, which, as a “final common 
pathway,” reflects the collective outcome of the various model pa-
rameters on the E-I ratio within each node. At a neuronal level, the 
E-I ratio is commonly defined as the ratio, or the balance, between 
excitatory and inhibitory currents, potentials, and conductance 
onto excitatory neurons (81,  82). Accordingly, in our study, we 
quantified the E-I ratio based on time-averaged input current onto 
the excitatory neurons, ⟨IE

i
⟩ , which reflects the net difference of the 

excitatory and inhibitory currents onto these neurons. Of note, our 
measure differs from another BNM-based measure of the E-I ratio 
based on model state variables, which was used in a similar previ-
ous study (56): the ratio of the time-average excitatory synaptic 
gating variable, ⟨SE

i
⟩ , to the time-average inhibitory synaptic gating 

variable, ⟨SI
i
⟩ . By inspecting the time series of model state vari-

ables in an example optimal simulation, we found that IE
i
(t) and 

SE
i
(t)∕SI

i
(t) are positively correlated (R2 = 0.469). However, in sub-

sequent analyses, we found notable differences between these two 
alternative BNM-based measures of the E-I ratio: (i) Assuming that 
the firing rate of excitatory neurons, rE , is an outcome of the E-I 
ratio (61), which indicates low versus high states of activity (81), we 
expect a measure of the E-I ratio to positively correlate with it. Ac-
cordingly, in an example simulation and using an exponential gen-
eralized linear mixed-effects model, we found that rE

i
(t) correlates 

positively across nodes and time with both IE
i
(t) (R2 = 0.977) and 

SE
i
(t)∕SI

i
(t) (R2 = 0.573) but is more strongly correlated with IE

i
(t) 

(fig. S19). This was expected given that model Eq. 3 directly relates 
IE
i
(t) to rE

i
(t) . (ii) Next, given the optimal simulation of 40 randomly 

selected subjects of the PNC dataset, we performed perturbed sim-
ulations in which one of the model parameters was increased or 
decreased by 10%, pushing the simulation to an expected state of 
increased/decreased excitation/inhibition (e.g., the 10% increase in 
G is expected to push the system toward higher excitation). We 
then used paired t tests to compare each measure of the E-I ratio 
before and after the perturbation (fig. S20) and found larger effects 
of perturbations on ⟨IE

i
⟩ (mean ∣T∣ = 21.480 ± 5.383) compared to 
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⟨SE
i
⟩∕⟨SI

i
⟩ (mean ∣T∣ = 6.994 ± 2.726). This shows that ⟨IE

i
⟩ may be 

more sensitive to capture the variations in the E-I ratio caused by 
parameter perturbations. (iii) Last, we studied the effects of age on 
⟨SE

i
⟩∕⟨SI

i
⟩ in a random subsample of 200 subjects from the PNC 

dataset (same as data used in the “Sensitivity analyses” section) 
and, across different model configurations, found significant in-
creases primarily in unimodal areas, while most of the association 
areas showed no changes or small decreases (fig. S21). Notably, the 
effect of age on ⟨SE

i
⟩∕⟨SI

i
⟩ , compared to its effect on ⟨IE

i
⟩ , was less 

sensitive to the choice of SC, parcellation, inclusion of interhemi-
spheric connections, and random seeds in the simulation (mean 
ICC: 0.999) and optimization (mean ICC: 0.963) but more sensi-
tive to the choice of maps.

These findings, combined with the commonly used definition of 
the E-I ratio in experimental and theoretical research at the neuronal 
level, suggest that ⟨IE

i
⟩ may be a more direct and interpretable measure 

of the E-I ratio using the BNM approach compared to the alternatives 
used in the literature. They also highlight how modeling choices and 
parameters can affect the outcomes of E-I ratio changes with age.

DISCUSSION
In this study, we used large-scale simulations of biologically realistic 
and individualized BNMs to estimate regional E-I ratio based on 
in  vivo imaging data and evaluated its maturation during adoles-
cence. We found a developmental decrease in the E-I ratio (higher 
inhibition or lower excitation) in the association areas, while the 
sensorimotor areas showed a lack of significant changes or a devel-
opmental increase. This finding was supported by imaging data 
from two independent datasets and through investigating both 
cross-sectional, interindividual age-related variations of the E-I ra-
tio, as well as its longitudinal, within-individual changes through 

adolescence. Our observed pattern of regional variability in the E-I 
ratio development aligned with the sensorimotor-association axis of 
cortical organization and highlighted the divergence of early versus 
late developmental timing of the sensorimotor and association ar-
eas. We extensively tested the sensitivity of our findings to various 
modeling nuisances and choices and found that despite certain vari-
ations, the E-I ratio maturation pattern was largely robust to them. 
Last, we contrasted our simulation-based measure of the E-I ratio to 
the alternative measures used in the literature and highlighted im-
portant considerations on their interpretations.

We found a robust and replicable developmental pattern of de-
creased E-I ratio in the association areas, indicating a relative increase 
in inhibition or decrease in excitation. This observation is in line with 
several findings from previous animal and human studies. At the mo-
lecular level, transcriptomics and proteomics analyses have revealed 
periadolescence changes in the expression of genes related to exci-
tation and inhibition, such as the NMDA receptor subunits (83); 
calcium-binding proteins parvalbumin, calretinin, and calbindin, 
which are expressed in different types of interneurons (9, 26, 27, 32); 
and GABAA receptor subunits (28–31). These molecular shifts mir-
ror changes in neuronal functional properties. For instance, within 
the prefrontal cortex, there is an increase in the subunit composi-
tion of the GABAA receptors, from α2- to α1-containing receptors, 
which have a faster decay time, resulting in faster synaptic inhibition 
(31, 32, 84). Consistent with this, recording of pyramidal neurons of 
the prefrontal cortex in nonhuman primates has indicated an in-
crease in the strength as well as shortening of the inhibitory postsyn-
aptic currents (9, 30). At the same time, microscopic investigation of 
the pyramidal neurons in the prefrontal cortex across different spe-
cies has revealed a marked reduction of the excitatory synaptic den-
sity during adolescence (19–23, 25, 85). In humans, a recent study on 
the PNC dataset estimated the E-I ratio in vivo by modeling multi-
variate patterns of FC and assessing their (dis)similarity to the FC of 

Fig. 6. Optimal model parameter interrelation and association with age in the PNC dataset. (A) Left: Pearson correlation of model parameter G and brain-averaged 
values of regional parameters wEE , wEI , and w IE across subjects are shown. Asterisks denote statistically significant correlations. Right: Interrelation of regional values of 
parameters wEE , wEI , and w IE across nodes and subjects based on a linear mixed-effects model with random intercepts and slopes per each node. (B) Left: Effect of age on 
optimal parameter G . Points represent the residual of G for each subject after removing confounds. Right: Unthresholded effect of age on regional parameters wEE , wEI , and 
w IE . Age in years (y)
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adults receiving alprazolam, a GABAergic agonist, and reported a 
significant developmental decrease in the E-I ratio, which was spe-
cific to association areas (33). Furthermore, magnetic resonance 
spectroscopy has been used in several human studies to assess the 
maturation of in vivo levels of glutamate and GABA, primarily in the 
frontal areas, yet has reported inconsistent findings (38–40, 86–89). 
Notably, this inconsistency has been attributed to the sensitivity of 
lower-field scanners to macromolecule contaminants, which under-
mines the reliability of the findings in earlier studies (39). However, a 
recent study used 7-T scanners and found an age-related decrease in 
glutamate despite stable levels of GABA in the dorsolateral prefrontal 
cortex and decreased levels of both glutamate and GABA, despite no 
changes in their ratio, in the anterior cingulate and anterior insular 
cortices (39).

In contrast to the widespread decrease in the E-I ratio we observed 
in association regions during adolescence, in sensorimotor areas, we 
found an increase or no significant age-related changes of the E-I ra-
tio. Human cortical maturation is suggested to unfold across a 
sensorimotor-association axis, with a differential temporal patterning 
indicating earlier maturation of the sensorimotor areas in contrast to 
later and more protracted maturation of the association cortices (18). 
In line with this, we found that the spatial pattern of E-I ratio matura-
tion across cortical areas coaligns with the proposed sensorimotor-
association axis of neurodevelopment (18). We additionally indicated 
that the genes preferentially expressed in association areas (showing a 
maturational decrease in the E-I ratio) are more prominent in later 
stages of development. The sensorimotor-association neurodevelop-
mental variation has been observed in cortical maturation of macro-
structural features (90), intracortical myelination (91,  92), white 
matter connectivity (93), and functional organization (18,  94,  95), 
parallel to the maturation of excitation and inhibition (18). Consistent 
with the findings in the prefrontal cortex (21, 22), accelerated pruning 
of excitatory synapses around puberty has been observed in senso-
rimotor areas as well (85, 96, 97), although synaptic pruning in asso-
ciation regions is protracted and peaks later than in sensorimotor 
areas (18, 24). In addition, the maturation of parvalbumin inhibitory 
interneurons in association areas is suggested to be more prolonged 
(18,  98). Given the differences in the neurodevelopmental timing 
along the sensorimotor-association axis, it may be that the E-I ratio 
matures earlier in the sensorimotor areas before adolescence, and 
hence, we did not find a maturational increase in relative inhibition in 
these areas during our study age period. In line with our observation, 
two other studies using human in vivo markers of E-I ratio reported a 
significant increase in inhibition markers in association areas despite 
no significant changes in sensorimotor regions (33,  40). Future re-
search can further investigate the regional differences in the timing of 
E-I ratio maturation by extending our approach to a wider age range, 
including developmental stages before and after adolescence. The pre-
sumed hierarchical progression of E-I maturation from sensorimotor 
areas in early life to association areas in later stages of development is 
thought to have important functional consequences (99, 100). Spe-
cifically, the maturation of the inhibitory circuitry in an area is mir-
rored by a critical period of enhanced experience-dependent 
plasticity, which is thought to support a shift of activity from sponta-
neous to stimulus evoked and in turn enhance the signal-to-noise ra-
tio in performing task-dependent computations of that region. The 
hierarchical progression of this maturational cascade from sensorim-
otor areas in early life to association areas in later stages of develop-
ment is in turn suggested to support the maturation of lower-order 

sensory and motor functions toward higher-order social and execu-
tive functions (99,  100). Myelination, which is thought to increase 
near the end of these critical periods of plasticity (99), follows a simi-
lar hierarchical maturational trajectory (18), and it will be intriguing 
for future studies to investigate the link between the maturation of E-I 
ratio and myelination.

There are important methodological considerations in using 
BNMs to estimate E-I ratio based on imaging data. Our study ex-
tends upon a recent modeling study, which found a widespread rela-
tive increase in inhibition across the cortex, most prominently in the 
sensorimotor areas, by using BNMs constructed for 29 age groups 
of the PNC dataset and based on a template SC of an adult sample 
(56). In contrast, here, we used large-scale simulations to con-
struct individualized BNMs (44, 54, 55), which allowed more spe-
cific simulation-based mapping of the E-I ratio in each individual 
subject, and this also enabled studying changes of the E-I ratio longi-
tudinally within the same individual. In addition, individualized 
BNMs are shown to enhance the reliability of model parameters and 
fingerprinting accuracy of the simulated data (55). While our find-
ings within the association areas were in agreement with the study 
by Zhang et al. (56), indicating a maturational decrease in the E-I 
ratio, they diverged in the sensorimotor areas. We suspect that this 
divergence can be attributed to several differences of the two stud-
ies, which, in addition to the usage of group-level versus individual-
ized BNMs, include different simulation-based markers of the E-I 
ratio as well as the methodological details of image processing, 
modeling, and optimization. However, we presented findings that 
highlighted that IE

i
 , compared to SE

i
∕SI

i
 , as well as model parame-

ters, may be a more direct BNM-based marker of the E-I ratio and 
be closer to its common definition in the literature as the ratio, or 
the balance, between excitatory and inhibitory currents, potentials, 
and conductance onto excitatory neurons (81, 82).

To further investigate the role of methodological choices and con-
founds in our findings, we performed extensive sensitivity analyses 
and showed that our key findings remain robust to such nuisances. 
By meta-analytically pooling the age effects on E-I ratio across differ-
ent models, we found a developmental pattern consistent with our 
main findings. However, while the overall maturational patterns 
were stable, we observed notable variations in the simulation out-
comes across these alternative models, highlighting the importance 
of modeling and analytical decisions when using BNMs to infer hid-
den features such as the E-I ratio, in particular at the level of indi-
vidual data. One critical methodological consideration is the 
selection of heterogeneity maps (or their absence), which can influ-
ence the spatial pattern of the E-I ratio maturation, although in non-
trivial ways. While map-free models might eliminate this potential 
confound, they may not be biologically valid or technologically fea-
sible options, and we showed that they lead to worse fitting of the 
model to the empirical data. Specifically, a “homogeneous” map-free 
model assumes that the local microcircuits are uniform across the 
cortex, contradicting well-established regional differences, for ex-
ample, in the distribution of excitatory and inhibitory neuronal sub-
types (65, 101). Conversely, a “node-based heterogeneous” model is 
too complex and difficult to fit, requiring considerably more simula-
tions per subject. This makes it infeasible to use such a complex mod-
el within our individualized modeling approach applied to many 
subjects and sessions. Given challenges of map-free models, map-
based heterogeneity offers a pragmatic intermediate solution that en-
ables constrained heterogeneity of the parameters while maintaining 
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its feasibility. Another key methodological consideration is the char-
acteristics of the Gaussian noise incorporated in BNMs to account 
for the inherent stochasticity of the brain (102, 103). We found that 
variations in the random sequence of noise influenced simulation 
outcomes, yet the observed effects of age on the E-I ratio remained 
largely robust. This highlights that future BNM studies should explic-
itly take the often-overlooked impacts of noise random sequence 
into account, for example, by repeating the simulations across mul-
tiple random seeds to assess the stability of their findings.

Recognizing the influence of modeling choices on simulation 
outcomes, we emphasize the need for future research to systemati-
cally explore and characterize these effects. While dedicated meth-
odological studies should continue investigating how different 
modeling decisions shape BNM-derived measures (57, 58), studies 
applying BNMs to specific neurobiological questions should also as-
sess the impact of alternative modeling choices on their reported 
findings. However, comprehensive sensitivity analyses can be com-
putationally demanding, making it impractical to explore all sources 
of variability across large datasets. To address this, future research 
should consider using more efficient simulation implementations, 
such as the GPU-based approach introduced in this study, or devel-
oping methods that estimate modeling influences without running 
numerical simulations, such as analytical approximations (66) or 
deep learning–based methods (104).

Given the methodological flexibility of BNM paradigms, establish-
ing optimal methodological choices in mapping the E-I ratio using 
BNMs at the individual level remains an open challenge. Therefore, 
it will be crucial for the future research to investigate the following: 
(i) Comprehensively assessing how modeling choices may affect the 
simulation-derived E-I ratio measures. (ii) Developing approaches to 
enable more complex models while maintaining their feasibility and 
avoiding overfitting. Such models may include a “node-based hetero-
geneous” model or models that are more biologically detailed via incor-
poration of layer-wise neuronal subtypes and feedback/feedforward 
connections (105, 106), the modulatory neurotransmitter systems (46), 
or the dynamics of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid receptors (107). (iii) Evaluating the replicability of our findings in 
alternative datasets, particularly with higher imaging quality and more 
extensive follow-ups, as well as testing the fitting of BNMs to addi-
tional empirical measures such as magneto/electroencephalography 
(44, 108). (iv) Experimentally validating the E-I ratio measures ob-
tained through fitting of BNMs to the fMRI data against empirical 
measures obtained using electrical recordings or evaluating them in 
response to excitatory/inhibitory interventions.

Overall, this study provides in vivo evidence, based on individu-
alized BNMs, of a replicable and robust decrease in cortical E-I ratio 
in association areas during adolescence. The normative maturation 
of E-I ratio is suggested to have important functional consequences 
(18, 99) and its dysmaturation is believed to be associated with 
various neurodevelopmental disorders (11, 12). For example, the 
neurodevelopmental model of schizophrenia suggests that aberrant 
cortical maturation, particularly in the development of excitatory and 
inhibitory functions, may contribute to the emergence of the disease 
later in life (12, 13, 17, 109). Future studies should investigate the 
clinical relevance of adolescent maturation of E-I ratio in relation 
to the risk and diagnosis of neurodevelopmental disorders such as 
schizophrenia, as this could potentially offer biomarkers for early 
detection and intervention.

MATERIALS AND METHODS
This research complies with the ethical regulations as set by The In-
dependent Research Ethics Committee at the Medical Faculty of the 
Heinrich Heine University Düsseldorf (study number 2018-317). 
We used previously published data from sources that have received 
ethics approval from their respective institutions (52, 53, 110–112).

Participants
We studied adolescents from two population-based datasets, in-
cluding the cross-sectional PNC (52, 110, 111) and the longitudinal 
IMAGEN dataset (53). We selected subjects and follow-up sessions 
within the age range of 10 to 19 years. In the IMAGEN cohort, with-
in this age range, phenotypic assessments were conducted at the 
ages of 14, 16, and 19 and imaging data were acquired at the ages of 
14 and 19. Next, we excluded subjects with poor quality of raw or 
processed imaging data, as detailed below in the “Image processing 
and quality control” section. In the IMAGEN, the subjects were ex-
cluded if the imaging data had poor quality in any of the baseline or 
follow-up sessions, except for the DWI data for which subjects were 
selected on the basis of the image quality of the follow-up session. 
Our final sample consisted of 752 adolescents from the PNC (409 
female; mean age: 15.3 ± 2.4 years) and 149 participants from IMAGEN 
(72 female; baseline mean age: 14.4 ± 0.4 years; follow-up mean age: 
18.9 ± 0.5 years). The PNC data were collected at a single center in 
Philadelphia, while the IMAGEN data were acquired in five dif-
ferent centers across Europe, in Dresden (n = 58), Paris (n = 45), 
Mannheim (n = 30), London (n = 14), and Dublin (n = 2). The PNC 
included subjects with European American (n  =  351), African 
American (n = 332) and mixed/other (n = 69) ethnicities, and the 
IMAGEN cohort consisted of subjects with Caucasian (n  =  134), 
mixed (n = 12), and non-Caucasian (n = 3) ethnicities.

Image acquisition
T1w, rs-fMRI, and DWI data were acquired using 3-T scanners 
from different manufacturers (PNC: Siemens; IMAGEN: Siemens, 
Philips, General Electric). For more details on the image acquisition 
parameters, we refer the reader to the respective publications for 
each dataset [PNC: table 1 in (52); IMAGEN: table S5 in (53)]. Of 
particular relevance to our study, the repetition and acquisition 
times of the rs-fMRI images were respectively 3 s and 6:18 min in 
the PNC and 2.2 s and 6:58 min in the IMAGEN.

Image processing and quality control
T1w structural magnetic resonance imaging
T1w MRI images were processed using the recon-all command of 
FreeSurfer (version 7.1.1; https://surfer.nmr.mgh.harvard.edu/), 
which includes brain extraction, registration to standard space, tissue 
segmentation, and cortical surface reconstruction (113,  114). The 
quality of the FreeSurfer output was controlled on the basis of the 
Euler characteristic, which represents the number of cortical surface 
defects before correction. We excluded outlier subjects with Euler 
characteristic greater than Q3 + 1.5 × IQR (interquartile range) of 
their cohort (115). The FreeSurfer output and raw T1w images were 
subsequently used in the pipelines of rs-fMRI and DWI processing.
Resting-state functional magnetic resonance imaging
rs-fMRI images were preprocessed using fMRIprep (version 22.0.0; 
https://fmriprep.org/en/stable/), which performed brain extraction, 
image registration and motion correction, estimation of confounds, 
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and when possible, susceptibility distortion and slice time correc-
tions (116). The latter two steps were omitted in the IMAGEN data 
given the unavailability of slice timing and variability of field-map 
formats across centers. We next further processed the output of 
fMRIprep, which involved the following steps: (i) applying Schaefer-
100 parcellation (60) by taking the average signal of all vertices within 
each parcel at each time point, (ii) removing the first three volumes, 
(iii) high-pass temporal filtering >0.013 Hz, (iv) regressing out con-
founds including the average signal of white matter and cerebrospinal 
fluid voxels as well as 24 motion parameters (translation and rota-
tion in the three directions, in addition to their squares, derivatives, 
and squares of derivatives) (117), and (v) scrubbing motion outliers, 
defined on the basis of root mean squared translation >0.25 mm. 
The scrubbing was done by setting the signal in motion outlier 
volumes to zero while Z-scoring the rest of the volumes. This ap-
proach, compared to discarding the motion outliers, preserves the 
temporal structure of the BOLD signal, which is important in calcu-
lating dynamic FC.

We excluded subjects/sessions with high rs-fMRI in-scanner 
motion defined as less than 4 min of scan remaining after scrub-
bing motion outlier volumes or a time-averaged root mean square 
>0.2 mm. In addition, we performed visual quality control of the 
fMRIprep output and excluded subjects with gross misregistration 
or incomplete field of view.

Functional connectivity. FC was calculated as the Pearson correla-
tion of BOLD signal time series between the cortical areas.

Functional connectivity dynamics. The FCD matrix represents 
the temporal variability of the dynamic patterns of FC computed 
across sliding windows of time (118). To compute the FCD matrix, 
we initially calculated time-resolved FC matrices of sliding windows 
(PNC: size of 30 s and step of 6 s; IMAGEN: size of 30.8 s and step of 
4.4 s). We discarded edge windows and windows with ≥50% motion 
outliers. Subsequently, we computed FCD as the correlation between 
lower triangular parts of window FC patterns. The distribution of 
values within the FCD matrix represents the amount of recurrence 
of time-resolved FC patterns.
Diffusion-weighted imaging
DWI images were processed using Micapipe (version 0.1.1; https://
micapipe.readthedocs.io/en/latest/) (119), which combines tools 
from FSL (version 6.0.0) (120) and MRTrix3 (version 3.0.0) (121). 
This pipeline performed DWI processing steps including rigid-
body alignment of images, Marchenko-Pastur principal component 
analysis denoising, Gibbs ringing correction, motion and eddy 
current-induced distortion correction, nonuniformity bias correc-
tion, registration to the processed structural image, brain mask 
generation, and estimation of fiber orientation distributions using 
spherical deconvolution. Then, on each image, probabilistic trac-
tography was performed using the iFOD2 algorithm to estimate 
10 million streamlines (122). In addition, a track density image was 
computed using the iFOD1 algorithm with 1 million streamlines, 
which was used for the quality control (123). The quality control of 
the tractograms was done by visual inspection of the tractogram 
density images.
Structural connectivity
The SC matrix for each subject was created using Micapipe by par-
cellating the tractogram using the Schaefer-100 parcellation map 
(60) non-linearly registered to the DWI space. We subsequently 
normalized each SC matrix by division by its mean × 100, resulting 
in an equal mean of 0.01 in all SCs.

In addition to subject- and session-specific SCs of the adoles-
cents, we used higher-quality DWI data (3 T, three shells, 140 direc-
tions) of an adult sample of 50 healthy volunteers (MICs dataset, 23 
female; mean age: 29.5 ± 5.6 years) to construct a template SC (112). 
To do so, we obtained the SC of individual MICs subjects prepro-
cessed using Micapipe and calculated a group-averaged SC by tak-
ing the median of streamline counts in each edge. The template SC 
was subsequently normalized by its mean × 100, similar to the sub-
ject- and session-specific SCs of the adolescents.

In the individualized models reported in the main analyses, we 
used subject-specific SCs, but the adult template SC was used in the 
sensitivity analysis on the confounding effects of interindividual 
variability in SC. Of note, in IMAGEN, given the lower quality of 
tractograms in the baseline session, the main analyses were per-
formed by using the follow-up SC of each subject for the modeling 
of functional data in both the baseline and follow-up sessions. How-
ever, in a supplementary analysis, we additionally performed simu-
lations using session-specific SCs, within a subset of the IMAGEN 
subjects with adequate quality of tractograms in both sessions 
(n = 110, 52 female).

Biophysical network modeling
Next, we performed BNM simulation-optimization at the level of 
each individual subject/session (Fig. 1).
Model simulation
We simulated the spontaneous neuronal activity of 100 cortical re-
gions from the Schaefer atlas (60) as network nodes regulated by the 
reduced Wong-Wang model and interconnected through the SC 
(61). In short, this model describes the activity of large ensembles of 
interconnected excitatory and inhibitory spiking neurons in each 
area by a dynamic mean field model as a reduced set of dynamic 
equations governing the activity of coupled excitatory and inhibi-
tory pools of neurons. In this reduced model, the excitatory synaptic 
currents are mediated by the NMDA receptors and the inhibitory 
synaptic currents are mediated by the GABAA receptors. Within 
each cortical region, the excitatory and inhibitory neuronal pools 
are interconnected, and between regions, the excitatory neuronal 
pools are coupled through a scaled SC matrix.

Model equations. The model is mathematically described by a set 
of dynamic equations (61). The total input current (in nA) to each 
excitatory and inhibitory neuronal pool of each cortical node i, I (E∕I)

i
 , 

is calculated as

where WEIb = 0.382 nA and WIIb = 0.267 nA are the baseline input 
currents; S(E∕I)

i
 denote the synaptic gating variables; n = 100 is the 

number of nodes; C is the SC matrix, which together with the 
NMDA receptor conductance, JNMDA = 0.15 nA, and G (global cou-
pling), a free parameter of the model, determines the excitatory 
input current transmitted from the other nodes; wEE

i
 is the recur-

rent excitatory connection weight; wEI
i

 indicates the excitatory-to-
inhibitory connection weight; wIE

i
 is the inhibitory-to-excitatory 

connection weight; and wII = 1.0 denotes recurrent inhibitory 

IE
i
(t) =WEIb + wEE

i
SE
i
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connection weight. The local connection weights wEE
i

 , wEI
i

 , and wIE
i

 
can vary across nodes and simulations through the free parameters 
of the model and the FIC, as described below.

The total input current received by each neuronal pool is subse-
quently transferred to r(E∕I)

i
 , firing rates in Hz, using the sigmoidal 

neural response function, H (E∕I)

where aE = 310 nC−1 and aI = 615 nC−1 determine the slope of 
H (E∕I) ; bE = 0.403 nA and bI = 0.288 nA define the thresholds above 
which the firing rates increase linearly with the input currents; and 
dE = 0.16 and dI = 0.087 determine the shape of H (E∕I) curva-
ture around b(E∕I).

Last, the synaptic gating variables, S(E∕I)
i

 , follow

where SE
i
 is mediated by NMDA receptors with a decay time con-

stant τE = 0.1 s and γ = 0.641, and SI
i
 is mediated by GABA receptors 

with a decay time constant τI = 0.01 s. νi(t) is uncorrelated standard 
Gaussian noise with an amplitude of σ = 0.01 nA. S(E∕I)

i
 is subse-

quently bound within the range [0, 1]. Note that the fixed parame-
ters in Eqs. 1 to 6 are based on a previous paper by Deco et al. (61).

Model free parameters. The model is controlled by 15 free param-
eters, including G , as well as bias terms and coefficients for a fixed set 
of six biological maps, which together determine the regional values 
of wEE

i
 and wEI

i
 . More specifically, wp

i
, p ∈ {EE, EI} is calculated as

where wp

b
 , the bias term, and cp , a vector of six coefficients, are free 

parameters. M is a 6 by 100 matrix including the Z-scored biological 
maps in Schaefer-100 parcellation (fig. S1). These maps were based 
on independent samples of healthy individuals, obtained from neu-
romaps (74) and Hansen et al. (70) and included the following: 
(i) group-averaged T1w/T2w ratio map of the Human Connectome 
Project dataset (68, 69, 124), (ii) group-averaged cortical thickness 
map of the Human Connectome Project dataset, (iii) FC G1 (72), 
(iv) principal axis of Allen Human Brain Atlas gene expression data 
(Gene PC1) (71, 73), (v) NMDA receptor density positron emission 
tomography map (67, 70), and (vi) GABAA/BZ receptor density pos-
itron emission tomography map (70, 75). The resulting w(EE∕EI)

i
 maps 

were subsequently shifted if needed to ensure min
[
w

(EE∕EI)

i

]
 ≥ 0.001. 

We used the following ranges for the model free parameters: G = 
[0.5, 4.0] and w(EE∕EI)

b
 = [0.05, 0.75]. The range of coefficients for 

each map was defined as 
[

−1

max(map)
, −1

min(map)

]
 , corresponding to cT1w/

T2w = [−0.48, 0.59], ccortical thickness = [−0.40, 0.39], cFC G1 = [−0.59, 
0.72], cGene PC1 = [−0.36, 0.48], cNMDA = [−0.49, 0.42], and cGABAa/bz = 
[−0.30, 0.32].

Feedback inhibition control. FIC was used to determine the re-
gional values of wIE

i
 in each simulation, given the SC and other model 

parameters. The FIC algorithm aims to maintain a state of E-I balance 
in each region by adjusting wIE

i
 to satisfy an excitatory firing rate close 

to 3 Hz, which is suggested to be within the biological range (61). 
We used a two-stage implementation of the FIC by combining the 
original numerical implementation (61) with an analytical solution 
proposed by Demirtaş et al. (66). The latter solution analytically solves 
for wIE

i
 to satisfy the self-consistency of the model equations under 

the steady-state condition with ⟨rE
i
⟩ ≈ 3 Hz, corresponding to ⟨SE⟩ ≈ 

0.164757 and ⟨ IE ⟩ ≈ 0.37738 nA

in which the steady-state inhibitory synaptic gating variable 
⟨SI

i
⟩ = H I

�
⟨I I

i
⟩
�
τI was estimated by solving for ⟨I I

i
⟩ in

Subsequently, analytical estimates of wIE
i

 values were fed into the 
numerical implementation of FIC and were adjusted numerically 
(61). In this approach, given the analytical estimates of wIE

i
 , the 

model Eqs. 1 to 6 are numerically integrated for a short period of 10 s 
and, subsequently, the average input current to the excitatory pool 
of each brain region, ⟨IE

i
⟩ , is calculated. If ⟨IE

i
⟩ −

bE

aE

 in a region ex-
ceeded the target −0.026 by more than 0.005 nA, wIE

i
 is up/down-

regulated when the input current is higher/lower than the target, 
and the simulation is repeated with the adjusted wIE

i
 values in the 

next trial. This procedure is repeated for 10 trials or until the FIC 
target is satisfied in all nodes. Note that the maximum number of 
FIC numerical adjustment trials used here is lower than that of the 
original implementation to facilitate the scaling of the simulations. 
Furthermore, as the initial wIE

i
 values are estimated analytically rath-

er than being fixed to 1 (as was done in the original implementa-
tion), a smaller number of trials will be needed.

Hemodynamics model. The simulated synaptic activity of the excita-
tory population of each node, SE

i
 , was subsequently fed to the Balloon-

Windkessel model of hemodynamics to simulate the BOLD signal 
(125). This model is mathematically described by the following system 
of differential equations with state variables x (vasodilatory signal), f  
(blood inflow), v (blood volume), and q (deoxyhemoglobin content)
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where κ = 1

0.65
 s−1 is the rate of signal decay, γ = 1

0.41
 s−1 is the rate 

of flow-dependent elimination, τ = 0.98 s is the hemodynamic 
transmit time, α = 0.32 is Grubb’s exponent, and ρ = 0.34 is the rest-
ing oxygen extraction fraction. These parameters were based on a 
previous paper by Friston et al. (125). Last, on the basis of the mod-
el state variables, the BOLD signal is calculated as

in which V0 = 2% is the resting blood volume fraction (125), and k1 = 
3.72, k2 = 0.527, and k3 = 0.53 are dimensionless parameters that 
were derived for 3-T scans (66, 126). Last, the simulated BOLD sig-
nal was downsampled to match the repetition time of the empirical 
rs-fMRI data, i.e., 3 s for the PNC and 2.2 s for IMAGEN.

Numerical integration of the models. For each simulation, the model 
equations were numerically integrated using the Euler method with a 
time step of 0.1 ms for the neuronal model (Eqs. 1 to 6) and a time step 
of 1 ms for the hemodynamic model (Eqs. 10 to 13). The model simula-
tions were performed using in-house code (https://github.com/amns-
br/bnm_cuda and https://cubnm.readthedocs.io; see the “Data and 
materials availability” section for more details) on GPUs at JURECA-
DC (127), Raven, or Juseless high performance/throughput computing 
systems. This GPU implementation enabled efficient parallelization 
of calculations for individual simulations (across GPU “blocks”) and 
the regions within each simulation (across GPU “threads”). To match 
the duration of empirical rs-fMRI scans, the simulations were done for 
a biological duration of 450 s, from which the first 30 s was discarded 
to ensure that the BNM system’s state has stabilized.
Model evaluation
The goodness of fit of the simulated BOLD signal given a set of can-
didate parameters and SC matrix to a target empirical BOLD signal 
was evaluated on the basis of three measures of static and dynamic 
FC, following previous studies (56, 65):

Static edge-level FC. The simulated FC was calculated as the cor-
relation of simulated BOLD signal time series between nodes. The 
correspondence of simulated and empirical FC patterns was evaluated 
by calculating the Pearson correlation coefficient between the low-
er triangles of the matrices (FCcorr), with larger values representing 
higher correspondence.

Static global FC. The absolute difference of the averaged simulated and 
empirical FC matrices across all the lower triangular edges (FCdiff) 
was calculated to assess the similarity of global FC strength, with 
smaller values showing higher correspondence.

Dynamic FC. The simulated FCD matrix was constructed by cal-
culating the correlation of FC patterns between sliding windows of 
simulated BOLD signals, as described previously for the empirical 
data. The correspondence of simulated and empirical FCD distribu-
tions was calculated as the Kolmogorov-Smirnov (KS) distance of 
their lower triangular parts (FCDKS), with smaller values showing 
higher similarity of the distributions.

Subsequently, these measures were combined into a single measure 
of goodness of fit as FCcorr – FCdiff − FCDKS. Of note, in goodness-of-fit 
calculations, following Demirtaş et al. (66), we excluded the inter-
hemispheric connections. However, we also performed a robustness 
analysis in which these connections were included in the goodness-
of-fit calculations.

Parameter optimization
The model’s free parameters (n = 15) were fit to the empirical data of 
each subject/session using the CMA-ES optimization algorithm 
(62–64). CMA-ES is an efficient evolutionary optimization algo-
rithm that features a set of Λ particles exploring the parameter space 
collaboratively in an iterative process. The particles from each itera-
tion, which are individual simulations with different free parame-
ters, are regarded as a generation from which only the best particles 
are selected to form the descendant population of the next genera-
tion. Specifically, at each generation, the cost function of each par-
ticle is calculated, as described below. Then, a weighted mean of the 
best fitting ⌊Λ/2⌋ particles is calculated. Then, a new generation of 
particles is created by taking Λ samples from a multivariate normal 
distribution centered around the weighted mean of the best fitting 
⌊Λ/2⌋ particles from the previous generation. The covariance is de-
termined by a matrix that is updated to take the location of the cur-
rent best points into account. In this way, the search distribution is 
adapted iteratively toward a concentration around the optimal solu-
tions. This iterative process is continued for a maximum of 80 gen-
erations, following Wischnewski et  al. (64), and eventually, the 
optimal point across all generations is selected as the optimal pa-
rameters for the best fit of the simulation to the given target empiri-
cal data. We also applied an early termination rule in which the 
iteration was stopped if there was no improvement in the cost func-
tion greater than 0.005 over the past 30 generations.

The optimization goal was to maximize the goodness of fit while 
minimizing a penalty term. Particles were penalized if (i) the pa-
rameter of sampled particles fell outside the prespecified ranges, in 
which case the parameters were corrected and a penalty was added 
(63), or (ii) the ⟨rE

i
⟩ was outside the range of 2 to 4 Hz in any node, 

indicating the insufficiency of the FIC. For the latter, the FIC pen-
alty was calculated as

in which n is the number of nodes, and the summation is done 
across nodes with out-of-range ⟨rE

i
⟩ . Of note, we refrained from set-

ting the success of FIC as a hard constraint, but through this penalty 
term, applied it as a soft constraint, to allow for interindividual vari-
ability of E-I balance while keeping it within a biologically viable 
range (61).

Given the relatively high dimensionality of the optimization 
problem in our model and to sufficiently cover the large parameter 
space, we chose Λ = 210 in the CMA-ES. Consequently, with maximum 
80 generations, this involved performing a maximum of 16,800 sim-
ulations per run for each subject/session, which necessitated an 
efficient GPU-based implementation. In addition, for each given 
subject/session, the model simulation-optimization was repeated 
twice using different random seeds of the optimization to assess and 
reduce the risk of local optima. We then took the best fitting simula-
tion across the two runs of each subject/session as their optimal 
simulation for the next step.
Estimation of the E-I ratio in silico
Thus far, we described the procedure for deriving the optimal pa-
rameters that result in a simulation best fitting to the empirical rs-
fMRI data of a given subject/session using individualized BNMs. 
Then, given the optimal simulation for each subject/session, we ex-
tracted an in silico measure of regional E-I ratio. To do so, we 
calculated the average of total input current to the excitatory neurons 

τ
dq(t)

dt
=
f (t)

ρ

{
1−

[
(1−ρ)

1

f (t)

]}
−
q(t)v

1

α (t)

v(t)
(13)
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of each region after discarding the initial 30 s of the simulation. This 
measure can be interpreted as an in silico marker of the regional E-I 
ratio, as IE

i
 (Eq. 1) results from the combination of excitatory input 

currents to each node (from itself and from the excitatory neurons 
of the other nodes through the SC) balanced by the inhibitory cur-
rents from the inhibitory neuron of the same node. Therefore, an 
increase in ⟨IE

i
⟩ can be interpreted as an increase in E-I ratio, i.e., a 

relative increase in excitation or decrease in inhibition. Further-
more, using a similar approach, we calculated ⟨SE

i
⟩∕⟨SI

i
⟩ as an alter-

native marker of the E-I ratio used in a previous study (56).
Perturbed simulations
We performed a control analysis to assess the effect of known per-
turbations in the model parameters on the alternative markers of 
the E-I ratio, namely, ⟨IE

i
⟩ and ⟨SE

i
⟩∕⟨SI

i
⟩ . In this analysis, we ran-

domly selected 40 subjects of the PNC dataset and, for each subject, 
given their optimal simulations, we performed perturbed simula-
tions in which one of the model parameters ( G , wEE , wEI , or wIE ) 
was increased or decreased by 10%, while the other three parame-
ters were fixed to the optimal values. Notably, in these simulations, 
when wIE was not perturbed, it was not readjusted using FIC and 
was fixed to the wIE values obtained by the FIC run on the original 
optimal simulation. Similarly, perturbation of wIE was done by a 
10% increase or decrease of these original wIE values. This was to 
ensure that only one parameter in the model is perturbed and, 
therefore, the net direction of the effect of perturbation on the E-I 
ratio is predictable. Last, the effect of perturbation on the E-I ratio 
markers in each subject was assessed using paired t tests comparing 
the marker across nodes before and after the perturbation.

Statistical analyses
Age effects
Given the in silico regional measures of the E-I ratio for each 
subject/session, ⟨IE

i
⟩ , we performed group-level univariate statisti-

cal analyses to investigate the effects of age on these measures. Lin-
ear regression models were used to study the effect of age on the 
E-I ratio, with the goodness of fit, sex, and rs-fMRI in-scanner mo-
tion (based on time-averaged root mean squared translation) as 
confounds. In IMAGEN, longitudinal variation of E-I measures 
across the two sessions was assessed using similar linear mixed-
effects regression models with random intercepts per subject and 
inclusion of site as an additional confound. In each model, we ex-
cluded outliers with a dependent variable ≥3 SDs above/below the 
mean. We adjusted for multiple comparisons across regions using 
FDR based on the Benjamini/Hochberg method (q < 0.05). Similar 
models were used to investigate the effects of age on optimal mod-
el parameters and ⟨SE

i
⟩∕⟨SI

i
⟩ . We used statsmodels (https://www.

statsmodels.org/stable/index.html) (128) to perform regressions 
and FDR adjustment.
Within-sample stability of age effects using subsampling
In each dataset, we randomly selected 100 subsamples of the sub-
jects (stratified by sex and age group; n within each subsample: 376 
in PNC and 74 in IMAGEN) and investigated the effects of age on 
the E-I ratio separately in each subsample. Subsequently, we calcu-
lated the correlation of unthresholded age effect maps between all 
pairs of subsamples and reported its distribution as a measure of 
within-sample stability.
Spatial association of maps
We evaluated the spatial association of an E-I ratio maturation map 
X with a target map Y (another E-I ratio maturation map or a brain 

feature map) using Pearson correlation. In the comparison of two 
E-I ratio maturation maps, we additionally used cosine similarity 
given that Pearson correlation is insensitive to mean shifts and, thus, 
the changes in direction of the age effects. To account for spatial au-
tocorrelation, the statistical significance of these associations was as-
sessed by constructing nonparametric null distributions of Pearson 
correlation or cosine similarity calculated between X and spun sur-
rogates of the target map Y. Spin permutation was implemented at 
the parcel level using the ENIGMA Toolbox (https://github.com/
MICA-MNI/ENIGMA) (129) and based on 1000 permutations. This 
approach was used in assessing (i) the between-sample replicability 
of E-I ratio maturation between the PNC and IMAGEN datasets, (ii) 
the stability of E-I ratio maturation within a subsample of 200 sub-
jects from the PNC dataset across the sensitivity analyses compared 
to the effects observed in the main run, and (iii) the spatial align-
ment of E-I ratio maturation maps (based on the main or alternative 
runs) with the maps determining the heterogeneity of regional pa-
rameters, as well as the sensorimotor-association axis of cortical or-
ganization described in a recent study by Sydnor et al. (18) and its 
components or their substitutes (some overlapping with the regional 
parameter heterogeneity maps) (fig.  S6 and table  S2) (68,  69,  71–
73, 130–136).
Distribution of the E-I ratio maturation maps across the 
canonical resting-state networks
We assessed the association of the E-I ratio maturation maps with 
the map of seven canonical resting-state networks (76) using 
one-way analysis of variance (ANOVA) with post hoc Bonferroni-
corrected independent t tests. To control for spatial autocorrela-
tion, we assessed the statistical significance of resulting F and T 
statistics using null distributions generated from 1000 spun sur-
rogates based on parcel-level spinning implemented in the ENIG-
MA Toolbox (129).
Partial least squares regression of gene expressions and their 
developmental enrichment
Regional microarray expression data were obtained from six post-
mortem brains (one female; age: 24.0 to 57.0) provided by the Allen 
Human Brain Atlas (https://human.brain-map.org) (71). Data were 
processed with the abagen toolbox (https://abagen.readthedocs.io/
en/stable/) (73) using the Schaefer-100 atlas (60). Gene expression 
data from the right hemisphere were excluded because of the spar-
sity of samples and a large number of regions with no expression 
data. We subsequently used scikit-learn (https://scikit-learn.org/
stable/) (137) and performed partial least squares regression analy-
sis to identify gene expression patterns with high spatial coalign-
ment with the E-I ratio maturation maps within the left hemisphere. 
After selecting the top 500 genes with the highest absolute weights, 
we divided them into two sets of positively and negatively associated 
genes. Subsequently, using an online tool, we performed develop-
mental specific expression analysis of these genes (http://dougherty-
tools.wustl.edu/CSEAtool.html) (77). This tool uses Fisher’s exact 
test to assess the overlap between the set of provided genes and pre-
defined sets of genes, which are up-regulated in each developmental 
stage and brain structure, identified on the basis of the BrainSpan 
Atlas of the Developing Human Brain (http://www.brainspan.org). 
Here, for each set of genes, we reported the negative log of P values 
based on the specificity index (pSI) threshold of 0.05 within the ce-
rebral cortex and FDR adjusted across the developmental stages. 
To assess the statistical significance of the observed developmental 
enrichment pattern, we constructed null distributions of negative 

D
ow

nloaded from
 https://w

w
w

.science.org on January 12, 2026

https://www.statsmodels.org/stable/index.html
https://www.statsmodels.org/stable/index.html
https://github.com/MICA-MNI/ENIGMA
https://github.com/MICA-MNI/ENIGMA
https://human.brain-map.org
https://abagen.readthedocs.io/en/stable/
https://abagen.readthedocs.io/en/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
http://doughertytools.wustl.edu/CSEAtool.html
http://doughertytools.wustl.edu/CSEAtool.html
http://www.brainspan.org


Saberi et al., Sci. Adv. 11, eadr8164 (2025)     4 June 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

16 of 21

log values across developmental stages and positively and negatively 
associated genes by repeating the procedure described above for 
1000 spun surrogate maps of E-I ratio maturation and performing 
developmental specific expression analysis on the resulting null sets 
of genes positively and negatively associated with the surrogate 
maps. The resulting spin-permutation P values were subsequently 
FDR adjusted.
Test-retest reliability of E-I ratio across simulations
In the sensitivity analyses, we measured the node-level test-retest 
reliability of E-I ratio across simulations of the same subject be-
tween two simulation runs by measuring the median absolute de-
viation ICC of each region between the alternative simulations 
and across subjects. We interpreted ICC values as poor (<0.50), 
moderate (0.50 to 0.75), or good (≥0.75). To assess the effect of 
age on ICC measures, the ICC was additionally calculated sep-
arately in the younger and older subgroups of the PNC subsam-
ple subjects (split by median age), and the resulting ICC values 
across nodes were compared between the two age groups using 
paired t test.
Association of optimal model parameters across subjects
The association of optimal regional parameters ( wEE , wEI , and wIE ) 
across subjects and nodes was tested via linear mixed-effects regres-
sions with random intercepts and slopes per each node. These re-
gressions were performed using the lme4 R package (138). In 
addition, we used Pearson correlation to test the association of the 
optimal G with the mean of optimal regional parameters.
Association of model state variables
We randomly selected one subject from the PNC dataset and evalu-
ated the association of state variables within its optimal simulation 
across time points and nodes. The model state variables rE

i
(t) , IE

i
(t) , 

and SE
i
(t)∕SI

i
(t) were sampled every repetition time after the initial 

30 s of the simulation was removed. Subsequently, as SE
i
(t)∕SI

i
(t) ap-

proaches infinity when SI
i
(t) is close to zero, we excluded the data 

points at the top 2.5 percentile of SE
i
(t)∕SI

i
(t) . Subsequently, we used 

mixed-effects models with or without a logarithmic linking func-
tion to test the linear or exponential associations of IE

i
(t) with rE

i
(t) , 

SE
i
(t)∕SI

i
(t) with rE

i
(t) , and SE

i
(t)∕SI

i
(t) with IE

i
(t) and reported the 

results of the model with a lower Akaike information criterion. The 
mixed-effects models included random intercepts and slopes and 
were implemented using the lme4 R package (138) and its Python 
interface in the pymer4 package.
Random-effects meta-analysis of age effects across 
alternative modeling configurations
The sensitivity analyses described below resulted in several E-I ratio 
maturation maps based on the alternative configurations used for the 
BNM simulation-optimization runs. We performed random-effects 
meta-analyses, independently for each parcel and across seven main 
and alternative runs of map-based models (reported in Fig. 5, A to 
E), to calculate their pooled effects. The effect sizes used in these 
meta-analyses were partial correlations of age with the E-I ratio (af-
ter removing outliers and controlling for the goodness of fit, sex, and 
in-scanner rs-fMRI motion). The heterogeneity of effect sizes in each 
parcel was assessed using the I2 index and Cochran Q test, where 
P(Q)  <  0.05 indicates significant heterogeneity. In addition to the 
main meta-analyses across map-based models, we performed sup-
plementary meta-analyses in which two map-free (“homogeneous” 
and “node-based heterogeneous”) models were additionally includ-
ed. The PyMARE (https://pymare.readthedocs.io/en/latest/) package 
was used to perform all the meta-analyses.

Sensitivity analyses
To assess the influences of modeling and analytical choices as well as 
the effects of interindividual variability of SC and noise, we per-
formed a series of sensitivity analyses on a randomly selected sub-
sample of 200 subjects (stratified by sex and age bin) from the PNC 
dataset and compared them to the main run.
Interindividual variability of the structural connectome
We assessed the potential effect of the interindividual variability of 
SCs in our findings by performing the following analyses: (i) We 
studied the effect of age on the E-I ratio, additionally controlling for 
the SC strength of each node, calculated as the row-wise sum of the 
SC. (ii) We performed BNM simulation-optimization using subject-
specific functional data as the target but with the template SC of the 
MICs dataset determining the connectivity of model nodes, thereby 
eliminating the interindividual variability of SCs as a potential 
source of variability in the regional E-I ratio. These higher-quality 
DWI data from an adult sample were chosen to additionally assess 
the robustness of our results to potential inaccuracies of subject-
level SCs derived from relatively lower-quality DWI data of the ado-
lescent datasets.
Parcellation, heterogeneity of regional parameters, 
interhemispheric connections, and Gaussian noise seed
In these sensitivity analyses, we performed the BNM simulation-
optimization using alternative modeling configurations, including 
(i) using the Schaefer-200 parcellation, (ii) using T1w/T2w and FC G1 
as the heterogeneity maps, (iii) using NMDA and GABAA/BZ as 
the heterogeneity maps, (iv) using T1w/T2w, FC G1, NMDA, and 
GABAA/BZ as the heterogeneity maps, (v) using six null maps gener-
ated by randomly spinning the original maps together, as implemented 
in the ENIGMA Toolbox (126), (vi) assuming homogeneous regional 
parameters wEE

i
 and wEI

i
 in a three-parameter “homogeneous” model, 

(vii) assigning independent free parameters for each regional param-
eter of each node in a 201-parameter “node-independent” model, 
(viii) including interhemispheric connections in the goodness of fit 
and cost calculations, and (ix) using a different Gaussian noise seed 
than the default. Subsequently, we compared these optimal simula-
tions derived from these alternative models with the main run in 
terms of goodness-of-fit measures, test-retest reliability of E-I ratio, 
and the effect of age on the E-I ratio. To assess the effect of Gaussian 
noise seed on the findings, we additionally calculated the effect of age 
on the E-I ratio based on average estimates from models using the 
default and alternative noise seeds. Furthermore, in the “node-based 
heterogeneous” model, we assessed the level of optimizer conver-
gence based on the range (max – min) of goodness of fit across the 
particles in the last generation and compared it to that of the main 
run using paired t test.
Effects of Gaussian noise seed and interregional conduction 
delay in optimal simulations of the main run
These analyses were performed by repeating the optimal simulation 
of each subject obtained in the main analyses with alternative con-
figurations, including (i) using 50 different randomization seeds for 
generating the Gaussian noise injected into the model (Eqs. 5 and 6) 
and (ii) adding conduction delay in the signal transmission between 
the model nodes. For the latter, delay was calculated as the SC edge 
length obtained from the tractography of each subject, divided by a 
conduction velocity. For each subject, we performed six alter-
native simulations with variable conduction velocities in the 
range of {1, …, 6} m/s. Of note, in simulations with conduction 
delay, a recent history of SE

i
 in all nodes needs to be stored in GPU 

D
ow

nloaded from
 https://w

w
w

.science.org on January 12, 2026

https://pymare.readthedocs.io/en/latest/


Saberi et al., Sci. Adv. 11, eadr8164 (2025)     4 June 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

17 of 21

memory so that the input of node j to node i at time t can be deter-
mined on the basis of SE

j
 at delayij time points ago. Accordingly, to 

reduce memory needed for storing this history, we performed these 
simulations by updating the global input to each node at intervals of 
1 ms, instead of 0.1 ms used in the main analyses. Subsequently, we 
calculated the goodness-of-fit measures of the alternative simula-
tions to the empirical data of each subject and compared them with 
the goodness-of-fit measures of the main simulation. In addition, 
we calculated the ICC of E-I ratio between the main simulation and 
each of the alternative simulations. In the case of Gaussian noise 
seeds, we combined the goodness of fit as well as ICC measures of 
the 50 different seeds by taking their median.
Ground truth recovery analysis
We first generated synthetic functional data by running a ground 
truth simulation with known (and arbitrary) model parameters and 
using the template SC. Then, similar to the approach used for fitting 
the models to the real empirical data of subjects, we performed two 
BNM simulation-optimization runs aimed to maximize the model 
fit to the synthetic FC and FCD of the ground truth simulation. 
Next, we selected the best of the optima resulting from two runs as 
the “recovered optimal simulation” and compared it to the ground 
truth simulation in terms of goodness-of-fit measures and recovery 
of regional E-I ratio. For assessing the recovery of regional E-I ratio, 
we used Pearson correlation and ICC to compare the arrays of re-
covered versus ground truth simulations. We performed two alter-
native types of recovery optimization runs: (i) using the same 
Gaussian noise seed as the ground truth simulation or (ii) using 50 
alternative Gaussian noise seeds that differed from the one used in 
the ground truth simulation.
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addition, the cuBNM toolbox was used to perform some of the simulations reported in the 
manuscript, including the Schaefer-200 model, “node-based heterogeneous” model, tests of 
delay, and simulation seed effects, as well as parameter perturbation and ground-truth recovery 
analyses. The PNC and IMAGEN data are publicly available in (i) the Database of Genotypes and 
Phenotypes (dbGaP), accession number phs000607.v3.p2 (“Neurodevelopmental Genomics: 
Trajectories of Complex Phenotypes”), and (ii) the IMAGEN database (https://imagen2.cea.fr). 
Access to these datasets is restricted to authorized users and can be obtained by application to 
(i) dbGaP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.
v3.p2) and (ii) the IMAGEN dataset (https://imagen-project.org/the-imagen-dataset/). The 

individual-level raw and processed data of MICs dataset is openly available at https://osf.io/
j532r/. All the summary statistics are available in the project repository at https://doi.org/10.5281/
zenodo.12097081. All data needed to evaluate the conclusions in the paper are present in the 
paper and/or the Supplementary Materials.
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