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A B S T R A C T   

Humans synchronize with one another to foster successful interactions. Here, we use a multimodal data fusion 
approach with the aim of elucidating the neurobiological mechanisms by which interpersonal neural synchro-
nization (INS) occurs. Our meta-analysis of 22 functional magnetic resonance imaging and 69 near-infrared 
spectroscopy hyperscanning experiments (740 and 3721 subjects) revealed robust brain regional correlates of 
INS in the right temporoparietal junction and left ventral prefrontal cortex. Integrating this meta-analytic in-
formation with public databases, biobehavioral and brain-functional association analyses suggested that INS 
involves sensory-integrative hubs with functional connections to mentalizing and attention networks. On the 
molecular and genetic levels, we found INS to be associated with GABAergic neurotransmission and layer IV/V 
neuronal circuits, protracted developmental gene expression patterns, and disorders of neurodevelopment. 
Although limited by the indirect nature of phenotypic-molecular association analyses, our findings generate new 
testable hypotheses on the neurobiological basis of INS.   

1. Introduction 

Synchronization with the environment is a key mechanism that fa-
cilitates adaptation to varying environmental conditions in most living 
organisms, potentially providing an evolutionary advantage (Xue et al., 
2019). In humans, adaptation to other people is a central survival 
mechanism and has been linked to interpersonal synchronization that 
occurs at multiple biobehavioral levels during human social interaction 
(Gordon et al., 2021; Harel et al., 2011; Mogan et al., 2017; Müller et al., 
2013; Reindl et al., 2022). Interpersonal synchronization involves co-
ordination of behavioral, physiological, or hormonal activities between 

people and may represent adaptive capacities that allow humans to 
access another’s internal arousal state (Mizugaki et al., 2015), share and 
regulate emotions, increase social affiliation, empathy, and prosocial 
commitment (Mogan et al., 2017), facilitate learning (Pan et al., 2021), 
and adapt to collective behaviors and group norms (Wiltermuth and 
Heath, 2009; Reinero et al., 2021). Revealing the neurobiology under-
lying interpersonal synchronization will improve our understanding of 
the fundamental mechanisms by which humans adapt to and engage 
with others. Knowledge on how these mechanisms work and how they 
fail has broad implications for educational sciences and developmental 
and social neurosciences on the one hand, and for intra- and intergroup 
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conflict studies and psychiatric health care on the other. 
Interpersonal synchronization has been extended to the neural ac-

tivity of interacting individuals, often referred to as interpersonal neural 
synchronization (INS) (Jiang et al., 2015), interbrain synchrony, or 
brain-to-brain synchrony (Mu et al., 2016; Dikker et al., 2014). In a 
single brain, rhythmic oscillations of neurons may lead to neuronal 
signal coherence through synchronization of excitatory states, thereby 
enabling neuronal information transfer and interaction (Fries, 2005). 
Local neuronal oscillations have been linked to excitation-inhibition (E/I) 
balance, regulated by GABAergic and glutamatergic neuron populations 
(Gonzalez-Burgos and Lewis, 2008; Sears and Hewett, 2021), which may 
also be a driving factor for long-range synchronization (Stagg et al., 
2014). Electrophysiologically, within-brain synchronization may be 
driven by excitatory cortico-cortical connections (Uhlhaas and Singer, 
2006), together with subcortical structures, in particular the thalamus 
(Llinás and Steriade, 2006). Across brains, in analogy to the oscillations 
of individual neurons, our brains and their sensory systems may also 
rhythmically sample information from the environment. Information 
transfer is then not enabled via direct physical contact but indirectly 
through actions arising from an individual’s motor system (e.g., speech, 
sounds, gestures, or eye contact). These actions are transmitted through 
the environment and sampled by an interaction partner’s sensory sys-
tem. In each individual in a dyad or group, rhythmical neuronal oscil-
lations may then synchronize (Hasson and Frith, 2016). 

By simultaneous brain recordings from two or more subjects, termed 
hyperscanning (Montague et al., 2002), it is now possible to quantify the 
temporal and spatial similarities of brain signals while the individuals 
engage in interpersonal interaction. Alternatively, one subject can be 
scanned after another in response to prerecorded stimuli of the first 
person, often termed pseudohyperscanning (Babiloni and Astolfi, 2014; 
Schoot et al., 2016). Methodologically, human hyperscanning experi-
ments have been performed over the full spectrum of noninvasive 
electrical and hemodynamic brain imaging techniques, with electroen-
cephalography (EEG), functional near-infrared spectroscopy (fNIRS), 
and functional magnetic resonance imaging (fMRI) being the most 
widely used (Babiloni and Astolfi, 2014; Czeszumski et al., 2020; Nam 
et al., 2020). 

Previous human hyperscanning studies identified a variety of brain 
regions that contribute to INS, including the medial prefrontal cortex 
(PFC), anterior cingulate (Babiloni et al., 2007; Yun et al., 2012), su-
perior temporal gyrus (STG) and right temporoparietal junction (rTPJ) 
(Stolk et al., 2014; Bilek et al., 2015; Kinreich et al., 2017), and insular 
cortex (Koike, Tanabe et al., 2019). The first meta-analytic evaluation of 
13 fNIRS hyperscanning studies involving interpersonal cooperation 
confirmed INS in the PFC and TPJ (Czeszumski et al., 2022). The 
observed brain-regional patterns suggest connections to brain networks 
known to be associated with mentalization (Schurz et al., 2021; Bilek 
et al., 2015), social cognition and interaction (Feng et al., 2021), pre-
dictive coding (Ficco et al., 2021; Shamay-Tsoory et al., 2019), and 
mirroring (Rizzolatti and Craighero, 2004; Schippers et al., 2010). These 
patterns indicate that INS involves complex cognitive processes, 
including theory of mind (ToM), mental modeling, prediction, emula-
tion, and simulation of behavioral and affective states. 

Developmentally, INS might be rooted early in human life, with 
synchronous caregiver-infant interactions being critical for establishing 
affiliative bonds (Feldman, 2017) and impacting long-term develop-
mental outcomes (Atzil and Gendron, 2017). In the brain, on both 
cognitive and functional levels, INS has been embedded in a predictive 
coding framework (social alignment system), mediated by a 
three-component feedback loop consisting of an observation-ex-
ecution/alignment, an error-monitoring, and a reward system thought to be 
activated by and to reinforce successful alignment (Shamay-Tsoory 
et al., 2019). As postulated in the mutual prediction theory, coherent 
patterns of brain activity in two interacting partners might result from 
the sum of neural activities from co-localized neurons (i) encoding 
self-behavior as well as (ii) encoding predictions of the partner’s 

behavior (Hamilton, 2021; Kingsbury et al., 2019). On the neurophysi-
ological level, the connectivity between two brains or among multiple 
brains may be shaped by social contact in analogy to the Hebbian rule 
for synaptic connectivity (“fire together, wire together”) (Sha-
may-Tsoory, 2021). Here, the cortical activity of one subject engaged in 
a certain behavior would translate into the cortical activity of an 
interacting subject, with the repetition of this social interaction 
reshaping interbrain functional connectivity not only in dyads but 
potentially in entire social groups (Ramakrishnan et al., 2015). On the 
neurochemical level, oxytocin and dopamine have been discussed as the 
key neurotransmitter systems involved (Feldman, 2017; Gvirts and 
Perlmutter, 2020; Mu et al., 2016) given their pivotal roles in social 
functions (MacDonald and MacDonald, 2010), reward processing 
(Glimcher, 2011), and reciprocal interactions between the two systems 
in the mesolimbic tract (Baskerville and Douglas, 2010). Related to the 
social alignment system (Shamay-Tsoory et al., 2019), these mesolimbic 
neurotransmitter systems may regulate a mutual social attention system 
located in the PFC and TPJ, possibly enabling selective attention in so-
cial interactions through reward-related feedback mechanisms (Gvirts 
and Perlmutter, 2020). 

The rapidly evolving hyperscanning research field and our inherent 
fascination with human social abilities and inabilities led to a steadily 
growing number of theoretical accounts attempting to explain the 
phenomenon of INS. However, robust evidence to ground these theories 
on is still lacking and many of the proposed frameworks have yet to be 
tested empirically. In particular, attempts to develop models moving 
beyond brain regional correlates have been limited by the unavailability 
of empirical data. Given that social cognition, oxytocin signaling, and E/ 
I balance are considered to be connected on neurophysiological levels 
(Lopatina et al., 2018), the extent to which these mechanisms underly-
ing within-brain synchronization are involved in INS also remains to be 
explored. 

The current study aimed to identify a common neural substrate and 
formulate new testable hypotheses regarding the neurophysiological 
mechanisms of INS. To achieve this goal, we used multimodal data 
fusion techniques as powerful tools to integrate data from imaging, 
genetic, and behavioral levels. Through integrative meta-analytic tech-
niques, data fusion approaches, and null model-based hypothesis tests 
(Fig. 1), we confirm robust spatial convergence of INS in the rTPJ as well 
as an involvement of the ventral PFC, and provide first evidence for a 
potentially important and previously unacknowledged role of GABAer-
gic neurotransmission and E/I balance in human INS. 

2. Materials and methods 

First, to identify a common brain regional correlate of INS, we 
collected the currently available fMRI and fNIRS hyperscanning data 
through an inclusive literature search and submitted it to spatial meta- 
analyses. Second, based on these brain correlates of INS, we assessed 
INS-related functional brain networks and biobehavioral association 
patterns on both brain regional and whole brain levels. Third, extending 
our results to a molecular level, we explored how the whole-brain INS 
distribution aligned with neurotransmitter systems and how spatially 
related gene expression patterns connected INS to specific neuronal cell 
types, brain development, and psychopathology (Fig. 1). 

2.1. Software, code, and data availability 

The analyses were conducted in Python (3.8.8) and Matlab (R2021a) 
environments. The following software and packages were used: Litera-
ture search: SetYouFree (0.0.1) (Gerloff, Lotter et al., 2022), Cadima 
(Kohl et al., 2018). Neuroimaging meta-analysis and image manipula-
tion: NiMARE (0.0.12rc7) (Salo et al., 2018), Nilearn (0.9.1) (Abraham 
et al., 2014), AtlasReader (0.1.2) (Notter et al., 2019). FNIRS probe 
reconstruction: AtlasViewer (2.12.12) (Aasted et al., 2015). FMRI data 
processing: CONN (20b) (Whitfield-Gabrieli and Nieto-Castanon, 2012). 
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Nuclear imaging/mRNA expression data retrieval and spatial correla-
tion analyses: JuSpace (1.3) (Dukart et al., 2021), neuromaps (0.0.2) 
(Markello et al., 2022), JuSpyce (0.0.1) (Lotter and Dukart, 2022), 
brainSMASH (0.11.0) (Burt et al., 2020), abagen (0.1.3) (Markello et al., 
2021), ABAnnotate (0.1.0) (Lotter et al., 2022). Visualizations: Nilearn, 
Matplotlib (3.4.3) (Hunter, 2007), seaborn (0.11.2) (Waskom, 2021), 
surfplot (0.1.0) (Gale et al., 2021; Vos de Wael et al., 2020), GO-Figure! 
(1.0.1) (Reijnders and Waterhouse, 2021), pyvis (0.2.1), WordCloud 
(1.8.1). Furthermore: scipy (1.8.1) (Virtanen et al., 2020), statsmodels 
(0.13.1), numpy (1.22.3), pandas (1.4.2). 

We provide all code and data necessary to reproduce our results in a 
GitHub repository (https://github.com/LeonDLotter/MAsync, DOI: 
10.5281/zenodo.7002118). Raw Human Connectome Project neuro-
imaging data (Van Essen et al., 2013) are openly accessible otherwise 
(https://db.humanconnectome.org). All code can be found in an anno-
tated Jupyter notebook, available in the repository and in HTML format 
(https://leondlotter.github.io/MAsync/MAsync_analyses.html). 

2.2. Ethics 

All analyses conducted and reported here rely on third-party data 
that were acquired in accordance with the respective institute’s ethical 
guidelines. The ethics committee of the RWTH Aachen University, 
Germany approved the use of these data (EK 188/22). 

2.3. Literature search and data extraction 

Currently published fMRI and fNIRS hyperscanning experiments 
were identified in a two-step semi-automated literature search (Gerloff, 
Lotter et al., 2022). Methodologically, we focused on fMRI and fNIRS, as 
both methods rely on the hemodynamic signal, provide a relatively high 
spatial resolution (as compared to EEG), and together form the currently 
largest body of hyperscanning literature (Nam et al., 2020; Czeszumski 
et al., 2020). In the following, we will use the terms publication to refer to 
original studies and experiment to refer to sets of data obtained from 
independent study subjects which can cover data from multiple publi-
cations (Tables S1 and S2). 

Fig. 1. The multimodal data fusion approach to explore the neurobiology of human INS. The figure outlines the multimodal data fusion workflow applied in the 
present study. Depicted are data sources and major analysis steps applied to generate multilevel knowledge and new hypotheses about the neurobiological basis of 
INS. Abbreviations: INS = interpersonal neural synchrony, fMRI = functional magnetic resonance imaging, fNIRS = functional near-infrared spectroscopy, GCEA 
= gene-category enrichment analysis. 
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2.3.1. Literature search process 
An initial semi-structured literature search relying on PubMed, Web 

of Science, and Scopus and a manual screening of Google Scholar cita-
tion lists were performed in spring 2021 and updated through PubMed 
alerts during the following months. The final search was conducted on 
December 12, 2021, through open-access APIs of PubMed, Scopus, 
arXiv, bioRxiv, and medRxiv using SetYouFree (https://github.com/Ch 
ristianGerloff/set-you-free) followed by forward- and backward-citation 
searches of the resulting records in the OpenCitations database (Peroni 
and Shotton, 2020) (excluding records without abstracts). The results of 
both literature searches, together with references from a related review 
(Nam et al., 2020), were imported into Cadima (https://www.cadima. 
info) for manual screening, eligibility assessment, and a final inclusion 
decision following PRISMA 2020 guidelines (Page et al., 2021). First, 
titles and abstracts were screened by one of five independent reviewers 
(LDL, LB, AN, JK, and CG) followed by a full text assessment by two of 
four reviewers unaware of each other’s inclusion/exclusion decisions 
(LDL, LB, AN, and JK). 

2.3.2. Study inclusion and data extraction 
We searched for (i) fMRI or fNIRS hyperscanning or pseudohyper-

scanning publications assessing (ii) temporal synchrony at (iii) whole- 
brain (fMRI) or channel-wise (fNIRS) levels between (iv) hemody-
namic brain signals of (v) healthy adults (18–65 years) engaging in (vi) 
uni- or bidirectional interactions (Supplement 1.1.1–3). While pseudo-
hyperscanning, in which typically one subject is scanned after another in 
response to pre-recorded stimuli of the first person (Babiloni et al., 2007; 
Schoot et al., 2016), allow for a more precise control of the experimental 
stimuli, it may not fully capture potential neurobiological representa-
tions unique to real-life reciprocal social interactions. However, we 
included both hyperscanning and pseudohyperscanning studies, as the 
latter may still shine light on certain aspects of social interaction in the 
sense that the unidirectional communicative aspect of, e.g., a subject 
listening to a speaker in a two-person communicative setting can be seen 
as a subaspect of an actual bidirectional social interaction. 

Brain coordinates or group-level imaging data depicting INS-related 
foci were extracted from the included experiments (Supplement 
1.1.4–6), requested from the authors, or, in case of multiple fNIRS 
studies, derived by reconstructing reported probe setups (see below). We 
were interested in analyses contrasting INS during interpersonal inter-
action with rest, control, or randomization conditions, independent of 
the type of interaction, as we aimed to identify the common neural 
substrate of INS (e.g., if a study contrasted INS during cooperation, 
competition, and control conditions, we included the combined result as 
cooperation/competition > control). We additionally included studies that 
reported only more specific contrasts (e.g., INS after feedback > INS prior 
to feedback) and evaluated, in post-hoc assessments, how the inclusion of 
these studies influenced the meta-analytic results (only relevant for 
fNIRS studies). Methodologically, we included studies independent of 
the connectivity estimator (i.e., timeseries correlation or prediction, 
wavelet coherence) if the method captured temporal synchrony. If 
studies investigated the effect of temporally shifting subject timeseries, 
we aimed to include only results reflecting zero-lag relationships to in-
crease homogeneity. Therefore, the broad concept of “significant INS” 
studied here can be summarized as similarity in the temporal variation of 
brain-derived blood oxygenation-dependent signals measured in humans 
during interpersonal interaction relative to non-interaction conditions. 

2.4. Spatial meta-analysis of fMRI experiments 

We used activation likelihood estimation (ALE) to identify consistent 
spatial correlates of INS. Briefly, ALE provides brain-wide convergence 
maps combining the experiment-level activation maps modelled from 
the reported INS foci by convolving each focus with a sample-size 
dependent Gaussian kernel (Eickhoff et al., 2012; Turkeltaub et al., 
2002, 2012). A nonparametric permutation procedure then 

distinguishes true convergence of INS foci from random spatial patterns 
(5000 permutations) (Eickhoff et al., 2012, 2016). 

2.4.1. ALE 
All coordinate based meta-analyses were performed using the Neu-

roimaging Meta-Analysis Research Environment (NiMARE; https:// 
github.com/neurostuff/NiMARE). All contrasts and coordinates 
derived from the same sample (experiment) were concatenated. For 
each experiment, an activation map in 2-mm isotropic Montreal 
Neurological Institute (MNI)-152 space (Fonov et al., 2011) was esti-
mated by convolving each focus with a Gaussian kernel. The width of the 
kernel, at half of the maximum of the height of the Gaussian, was 
determined based on the sample sizes of each experiment (Eickhoff 
et al., 2012; Turkeltaub et al., 2002, 2012). If foci from the same 
experiment overlapped, only the maximum voxel-wise values were 
retained (Eickhoff et al., 2012). The union of these experiment-level 
data constituted the meta-analytic convergence map. Voxel-wise sta-
tistical significance was determined based on an empirically derived null 
distribution (Eickhoff et al., 2012), a primary threshold of p < .001 was 
used to form clusters (extended by a threshold of p < .01 to increase 
sensitivity for weak effects) (Eklund et al., 2016), and a null distribution 
of cluster masses (5000 iterations) was generated by randomly drawing 
coordinates from a gray matter template. By comparison of the actual 
cluster masses to the null distribution of cluster masses, each cluster was 
assigned a familywise error (FWE)-corrected p value and significant 
clusters were retained by thresholding the cluster map at −

log10(p) >∼ 1.3. We relied on comparisons of cluster masses (the sum of 
voxel values) to estimate significance, as this has previously been shown 
to be more powerful than cluster inference based on size (the number of 
voxels) (Zhang et al., 2009). All subsequent analyses relied either on 
cluster-level FWE-corrected and binarized ALE clusters (depicting brain 
regions of significant spatial convergence of INS) or on the unthre-
sholded Z-maps generated from ALE-derived voxel-level p values 
(reflecting the continuous probability of observing INS for every voxel). 

2.4.2. Influence of individual experiments and risk of publication bias 
To estimate experiment-wise influences on the overall ALE result 

(Eickhoff et al., 2016), we iteratively calculated the contribution of 

experiment x as 1 −

∑
in-cluster ALE values without x∑

in-cluster ALE values
. Noting that this approach 

is not exact due to the nonlinear ALE union computation, from a prac-
tical perspective, it is sufficient to approximate contributions and 
identify the exaggerated influence of individual experiments (Eickhoff 
et al., 2016). We then calculated the spatial conjunction of all resulting 
thresholded and binarized maps (Nichols et al., 2005) to demonstrate 
which clusters persisted in each iteration. 

Cluster-wise robustness against publication bias was estimated as the 
fail-safe-N (Acar et al., 2018). For each cluster, noise experiments in 
which the foci did not contribute to the cluster were generated. We then 
estimated the minimum number of noise experiments needed to render 
the cluster insignificant, reflecting the number of negative studies that 
could have “remained in the file drawer” (Supplement 1.2). 

2.5. Spatial meta-analysis of fNIRS experiments 

As, to date, the fNIRS field is still limited with respect to methodo-
logical standardization and availability of specific meta-analytic tech-
niques, we developed a meta-analytic fNIRS evaluation in accordance 
with the ALE approach. In brief, for each of 100 cortical brain parcels 
(Schaefer et al., 2018), we collected information on whether or not INS 
was observed in fNIRS channels sampling the respective regions along 
with the overall number of subjects and experiments contributing to this 
information. We then calculated a parcel-wise “fNIRS index” incorpo-
rating all available information for further evaluation and tested for 
parcel-wise significance by randomizing channel-parcel-assignments 
(1000 permutations). 
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2.5.1. Coordinate extraction and reconstruction 
Most fNIRS studies use probe arrays with standard formats posi-

tioned on the participant’s head according to coordinates within the 
international EEG positioning system. Commonly used methods to 
derive approximate locations on the brain surface are (i) registration 
using an anatomical MRI scan of one or more subjects, (ii) registration 
after digitization of channel positions using a 3D digitizer, or (iii) virtual 
registration based on a digital model of the optode array and a reference 
database (Tsuzuki et al., 2007; Tsuzuki and Dan, 2014). The full work-
flow we followed to extract fNIRS coordinates is outlined in Supplement 
1.1.6. When possible, we included coordinates as reported or sent to us 
by the authors. When necessary, we obtained coordinates from a data-
base (Tsuzuki et al., 2007), or from other studies conducted by the same 
research groups, or we reconstructed the optode positions using Atlas-
Viewer (Table S2). Experiments for which this workflow failed were 
excluded. 

2.5.2. FNIRS data analysis 
For fNIRS data, standardized results reporting systems are currently 

being developed (Yücel et al., 2021), and no specific meta-analytic 
analysis techniques are available. To approximate a meta-analytic 
evaluation of fNIRS INS findings, we used a 100-parcel volumetric 
cortical atlas (Schaefer et al., 2018) to summarize fNIRS data by region. 
We assigned the nearest atlas parcel to each fNIRS channel using a 
kd-tree (Virtanen et al., 2020). Then, for each parcel, we collected the 
overall number of channels, the number of channels showing INS, and 
the corresponding numbers of experiments and subjects contributing to 
that information. To compare the results between parcels, we used three 
indices calculated as  

(i) Nsignificant channels,  
(ii) Nsignificant channels

Ncovered channels
× Ncontributing subjects, and  

(iii) Nsignificant channels
Ncovered channels

× Ncontributing experiments. 

We focused on the second index as it incorporated all available fNIRS 
data. To identify regions with the highest probability of the observed 
indices not being due to chance, we then permuted the channel-parcel 
assignment (1000 iterations), estimated exact one-sided p values for 
each parcel and each “fNIRS index”, and applied false discovery rate 
(FDR) correction across parcels per index. We preferred this ALE-like 
approach over effect size-based meta-analyses for each parcel (Czes-
zumski et al., 2022), as the latter would have severely limited eligible 
studies due to their methodological heterogeneity. The results were 
visualized on fsaverage surface templates after surface transformation 
(Markello et al., 2022; Wu et al., 2018). By using parcellation-level 
instead of voxel-level data, we aimed to approximate the spatial reso-
lution of fNIRS data, taking into account the added spatial uncertainty 
due to post-hoc reconstruction of channel coordinates without detailed 
information on head shape, size, and probe positioning. 

Second, we conducted a joint meta-analysis of all neuroimaging data 
by evaluating fNIRS foci along with fMRI foci by means of an ALE. To 
adapt fNIRS data to the ALE method, we kept the ALE kernel size to a 
constant 10-mm FWHM for all fNIRS experiments as the kernel’s sample 
size-FWHM function was developed for MRI data. 

To further incorporate the spatial uncertainty of fNIRS data in our 
analyses, we iteratively (1000 iterations) recalculated parcel-wise and 
fNIRS-ALE meta-analyses after randomization of fNIRS coordinates 
(10 mm radius constrained to the cortical surface; Supplement 1.3). 

2.6. Meta-analytic coactivation and resting-state functional connectivity 

To establish the role of our meta-analytic findings in a whole-brain 
functional context, we constructed a co-activation network using 
meta-analytic connectivity modeling (MACM) (Eickhoff et al., 2011; 
Langner et al., 2014) on BrainMap data (Laird et al., 2011). As MACM 

does not provide information on interregional connection strength, we 
assessed resting-state functional connectivity (RSFC) patterns within the 
MACM network (Whitfield-Gabrieli and Nieto-Castanon, 2012). 

2.6.1. MACM 
We performed MACM by calculating an ALE on all BrainMap ex-

periments (Laird et al., 2009, 2011) that had at least one activation focus 
within the robust rTPJ cluster (voxel-level p < .001). Only this cluster 
was used as the other INS-related ALE clusters proved unstable or, in the 
case of fNIRS analyses, did not survive multiple comparison correction. 
Data were constrained to activations from normal mapping studies (i.e., 
those involving healthy participants) and downloaded via Sleuth (3.0.4, 
https://brainmap.org/sleuth). The resulting patterns resemble the 
network of task-related coactivation associated with the region of origin 
and are closely related to functional networks derived by RSFC analysis 
(Eickhoff et al., 2011). We relied on the BrainMap database as experi-
ments and coordinates were manually screened by a dedicated team, 
promising greater precision and specificity of the resulting networks 
compared to automated data mining approaches. 

To identify the most specific regions coactivated with the INS cluster, 
we used a specific coactivation likelihood estimation (Langner et al., 
2014) in a separate analysis constructing a MACM network controlled 
for the baseline activation rate of all included BrainMap studies (3098 
experiments). 

To validate the MACM results, and to assess whether the resulting 
activation patterns mirrored those of the original INS data, we computed 
the spatial correlation pattern between Z-maps derived from MACM and 
INS analyses after parcellation into 116 functionally defined whole- 
brain parcels [100 cortical (Schaefer et al., 2018) and 16 subcortical 
parcels (Tian et al., 2020)]. 

2.6.2. RSFC 
As MACM is not suited to quantify the connection strength between 

pairs of regions, we elucidated the functional connectivity patterns 
within the coactivation network using resting-state fMRI, thereby vali-
dating the presence of the network in single-subject data. For this, we 
relied on open access data from 120 Human Connectome Project sub-
jects (50% female, 20 subjects per sex randomly drawn from each age 
group: 22–25, 26–30, and 31–35 years). The subject-level average 
timeseries of each MACM cluster was extracted and correlated between 
clusters using semipartial Pearson correlations. The p values resulting 
from connection-wise one-sample t tests were thresholded at p < .05 
(Bonferroni-corrected). Only positive connections were retained to 
exclude potential artifacts introduced through noise regression (Murphy 
et al., 2009) (Supplement 1.4). 

2.7. Functional contextualization 

To explore the functional context of the observed activation patterns, 
we characterized relationships to established brain-wide resting-state 
networks (Yeo et al., 2011; Chen et al., 2018), determined associations 
between our INS-findings and biobehavioral domains in the Neurosynth 
database (Yarkoni et al., 2011) labeled with functional domain-related 
terms (Poldrack et al., 2012), and finally assessed relationships to 
meta-analytic networks underlying INS-associated constructs. 

2.7.1. Overlap with major resting-state networks 
To assess spatial relationships between the INS-data and seven 

established resting-state networks covering the cortex, striatum, and 
thalamus (Yeo et al., 2011; Choi et al., 2012; Yeo, 2020), we calculated 
the relative and absolute distributions of ALE-derived clusters and the 
MACM-network within each of these reference networks (Chen et al., 
2018). The relative distribution refers to the proportion of activated 
voxels within a reference network compared to all activated voxels, 
while the absolute distribution was calculated as the proportion of 
activated voxels compared to all voxels within a reference network. We 
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evaluated the results using a permutation procedure (Supplement 1.5). 

2.7.2. Functional decoding and comparison to related meta-analytic brain 
networks 

To allow for an objective, data-driven interpretation of functional 
domains associated with regions found in our ALE analyses, we relied on 
the Neurosynth database (Yarkoni et al., 2011), the largest corpus of 
annotated neuroimaging data available to date (version 7; 14,371 
studies). Studies in the database are mapped to topics generated by 
Latent Dirichlet Allocation (Poldrack et al., 2012) based on the fre-
quency of topic-associated terms in the study’s full text (default: at least 
every 1000th word annotated to the topic). We excluded 109 topics 
comprising mainly anatomical, disease-related, or too general terms (e. 
g., “resonance magnetic mechanisms”) from the 200-topic version of the 
database and applied two complementary functional decoding ap-
proaches. First, we decoded clusters resulting from ALE analyses based 
on reverse and forward inference (Müller et al., 2013) as implemented in 
NiMARE. For each topic and each cluster, all Neurosynth studies 
reporting at least one coordinate within the cluster were collected. The 
forward likelihood is the result of a binominal test examining whether 
the probability of topic-related activation in the cluster, 
P(Activation|Topic), is higher than the baseline probability of observing 
activation in the cluster, P(Activation). The reverse probability was 
derived from a chi-squared test assessing the probability of finding a 
particular topic given activation in the cluster, P(Topic|Activation), 
which was derived using Bayes’ rule. Both resulting sets of p values were 
FDR-corrected and Z-transformed. Second, we adopted the “Neurosynth 
approach" (https://neurosynth.org/decode) based on whole-brain 
spatial correlations between a brain volume of interest and topic maps 
derived from a spatial meta-analysis of all studies annotated to a topic. 
We calculated meta-analytic maps for each of 91 topics using the 
multilevel kernel density analysis chi-square algorithm implemented in 
NiMARE (Wager et al., 2007) and calculated spatial Spearman correla-
tions to the INS Z-map after parcellation as described above. By com-
parison of these correlation coefficients to null distributions derived 
from 10,000 spatial autocorrelation-preserving topic null maps (Burt 
et al., 2020; Markello et al., 2022) using JuSpyce (https://github.com/ 
LeonDLotter/JuSpyce), we estimated empirical p values and applied 
FDR correction. 

To further confirm these associations, we then calculated the relative 
and absolute distributions of the INS-related cluster and network within 
meta-analytic networks of social interaction (Feng et al., 2021), ToM 
(Schurz et al., 2021), and predictive coding (Ficco et al., 2021) as well as 
with a previously published representation of the rTPJ in which it was 
parcellated into two subunits (Bzdok et al., 2013). Except for the pre-
dictive coding network, which we generated from coordinates (ALE, 
voxel-level p < .001, cluster mass), volumetric data were obtained from 
the cited authors. 

2.8. Biological contextualization 

We then explored the neurobiological mechanism of INS by con-
ducting a series of whole-brain spatial correlation analyses explicitly 
testing for positive associations, i.e., systems that showed their highest 
density in brain areas identified as subserving INS. Briefly, we first 
assessed relationships to neurotransmitter atlases quantified by spatial 
correlation analyses adjusted for spatial autocorrelation (Burt et al., 
2020; Lotter and Dukart, 2022; Markello et al., 2022) and partial volume 
effects (Dukart and Bertolino, 2014). Second, we validated these ana-
lyses based on spatial associations with neuronal cell type distributions 
as obtained from human cell marker genes (Darmanis et al., 2015; Lake 
et al., 2016; Wang et al., 2018) using a neuroimaging-specific method 
for gene-category enrichment analysis (GCEA) (Subramanian et al., 
2005) based on gene null-ensembles (Fulcher et al., 2021; Lotter et al., 
2022). To assess the extent to which these molecular and cell-level 
systems could explain INS, we used dominance analysis (Azen and 

Budescu, 2003), a method that quantifies the relative contributions of 
each predictor to the overall explained variance in a multivariate 
regression model. Further GCEAs were directed at INS-associated 
developmental gene expression patterns, relationships to psychopa-
thology, and INS-related molecular processes. 

2.8.1. Sources and processing of nuclear imaging and gene expression 
atlases 

Invivo neurotransmitter atlases derived from nuclear imaging in 
various healthy adult cohorts (overall, 32 brain maps involving data 
from 1360 subjects) were collected from JuSpace (https://github. 
com/juryxy/JuSpace) and neuromaps (https://github.com/netne 
urolab/neuromaps), parcellated into 116 brain regions, and atlas-wise 
Z-standardized. Multiple atlases using the same tracers were combined 
by calculating the parcel-wise mean weighted by the number of subjects 
contributing to each atlas (Hansen et al., 2022) forming 21 averaged 
atlases (Table S3). Parcel-wise Allen Human Brain Atlas (ABA) mRNA 
expression data (https://portal.brain-map.org) (Hawrylycz et al., 2012) 
were retrieved and processed with abagen (https://github. 
com/rmarkello/abagen) using the default settings (Markello et al., 
2021; Arnatkevic̆iūtė et al., 2019) (Supplement 1.6). 

2.8.2. Spatial associations with neurotransmitter systems 
To relate the brain-wide INS distribution to molecular brain systems, 

spatial correlations between the INS ALE Z-map and nuclear imaging- 
derived brain maps were calculated as partial Spearman correlations 
of parcellated whole-brain data using JuSpyce. As parametric p values 
resulting from these analyses suffer from exaggerated false positive rates 
due to inflated degrees of freedom and spatial autocorrelations, we 
assessed significance by comparisons of “true” correlations to the right 
tails of empirically estimated null distributions of correlation co-
efficients derived from correlation with atlas-wise null maps (5000 it-
erations) (Burt et al., 2020; Lotter and Dukart, 2022; Markello et al., 
2022). The resulting positive-sided empirical p values were 
FDR-corrected. To control for partial volume effects, correlations were 
adjusted for parcel-wise grey matter estimates derived from the 
MNI-152 template (Dukart et al., 2021; Dukart and Bertolino, 2014). 

In sensitivity analyses, significant associations were repeated while 
(i) using only cortical parcels and (ii) adjusting for functional baseline 
activation rate. For the second approach, a map of baseline activation 
rate (meta-analytic map of 14,370 Neurosynth experiments) was addi-
tionally included in the partial correlation analyses. Finally, the 
observed association to GABAA receptors was replicated using ABA gene 
expression data (Supplement 1.7). 

Combined with the averaged neuronal cell type maps introduced 
below, we finally estimated the amount of INS variance explained by 
neurotransmitter and neuronal cell type distributions associated with 
INS using dominance analysis (Azen and Budescu, 2003) as imple-
mented in JuSpyce (Supplement 1.8). 

2.8.3. GCEA 
GCEA was applied according to an approach specifically developed 

for neuroimaging data (Fulcher et al., 2021). We adopted a previously 
published toolbox (https://github.com/benfulcher/GeneCategoryEnr 
ichmentAnalysis), originally designed for annotation of neuroimaging 
data to Gene Ontology (GO) categories (Ashburner et al., 2000; The 
Gene Ontology Consortium et al., 2021), to perform GCEA on any given 
set of genes (ABAnnotate, https://github.com/LeonDLotter/ABAnnotat 
e). First, a whole-brain volume (the INS ALE-Z-map) and the complete 
ABA dataset (including mRNA expression data for 15,633 genes) were 
parcellated into 116 brain regions. Next, spatial 
autocorrelation-preserving null maps (5000) were generated from the 
phenotypic data (Burt et al., 2020). After matching category and ABA 
genes based on gene symbols, Spearman correlations between the 
phenotypic map, the null maps, and all mRNA expression maps were 
calculated. For each null map and each category, null category scores 
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were obtained as the mean Z-transformed correlation coefficients. 
Positive-sided p values, representing the association of the phenotypic 
map to each category, were calculated from comparisons of the “true” 
category scores with the null distribution and were FDR-corrected. This 
approach has been shown to sufficiently control false positive rates 
potentially caused by spatial autocorrelation present in the phenotypic 
data and within-category coexpression in the genetic data (Fulcher et al., 
2021). 

The following sets of gene-category annotations were used 
(Table S4): neuronal cell type markers (PsychENCODE) (Darmanis et al., 
2015; Lake et al., 2016; Wang et al., 2018), genes associated with psy-
chiatric disorders (DisGeNET) (Jiao et al., 2012), developmental 
regional gene enrichment (BrainSpan) (Miller et al., 2014; Grote et al., 
2016), and GO biological processes (Ashburner et al., 2000; The Gene 
Ontology Consortium et al., 2021; Jiao et al., 2012). To aid interpreta-
tion, GO results were clustered as described in Supplement 1.9. 

3. Results 

3.1. Literature search and data extraction 

Searching for an extensive list of INS-related terms (Supplement 
1.1.1), the initial literature search resulted in 2575 unique records from 
which 79 publications were found eligible for meta-analysis (Fig. 2A for 
exclusion reasons). Finally, we included 14 hyperscanning fMRI publi-
cations (Bilek et al., 2015; Gordon et al., 2021; Koike et al., 2016; Koike, 
Sumiya et al., 2019; Koike, Tanabe et al., 2019; Miyata et al., 2021; Saito 
et al., 2010; Salazar et al., 2021; Shaw et al., 2018, 2020; Spiegelhalder 
et al., 2014; Špiláková et al., 2020; Wang et al., 2022; Xie et al., 2020; 

Yoshioka et al., 2021), 8 pseudohyperscanning fMRI publications 
(Anders et al., 2011; Dikker et al., 2014; Kostorz et al., 2020; Liu et al., 
2021, 2022; Silbert et al., 2014; Smirnov et al., 2019; Stephens et al., 
2010), 54 hyperscanning fNIRS publications, and 3 pseudohyperscan-
ning fNIRS publications [Fig. 2B (interactive version available online), 
see Tables S1 and S2 for detailed information and fNIRS references]. INS 
foci coordinates were extracted from the above publications, requested 
from the authors, drawn from a virtual registration database (Tsuzuki 
et al., 2007), or derived from manual reconstruction of fNIRS probe 
setups (Aasted et al., 2015). Detailed information is provided in the 
methods, Fig. 2, Supplement 1.1, Tables S1 and S2, and Figures S1 and 
S2. 

After taking data-reuse into account (Tables S1 and S2), 22 fMRI and 
69 fNIRS experiments reporting 297 and 228 brain foci derived from 
data of 740 and 3721 unique subjects were included. Task domains of 
these experiments varied widely, targeting communication, joint 
attention/action, cooperation/competition, learning, imitation, reward, 
and decision-making. 

3.2. Spatial meta-analysis of fMRI and fNIRS INS experiments 

To identify brain areas consistently associated with INS, we per-
formed separate spatial meta-analyses on INS brain coordinates reported 
in eligible fMRI and fNIRS experiments. For fMRI data, we relied on the 
well-established ALE method, while for fNIRS experiments, we devel-
oped a meta-analytic procedure comparable to the ALE approach. 

Fig. 2. Structured literature search. A: Flow chart depicting the literature search process in line with the PRISMA 2020 statement. SetYouFree was used for the 
automatic literature search, duplicate detection, and the cross-reference search. The resulting records, together with results from other sources, were submitted to 
Cadima to manually identify eligible studies. Note that the exclusion criteria listed in Reports excluded were not mutually exclusive. Records are entries in the 
publication lists resulting from the main search and screened on the abstract level, reports are publications screened in full, studies are included publications, and 
experiments are sets of data derived from independent study samples and can cover data from multiple studies. B: Citation network generated from OpenCitations 
data, including overview figures of reported INS foci and fNIRS probe setups. An interactive version with metadata for each individual study is available at https 
://leondlotter.github.io/MAsync/citenet. Note that the OpenCitations database only contains citations and references made openly accessible by the publishers 
and thus does likely not include all existing links among publications. Abbreviations: fMRI = functional magnetic resonance imaging, fNIRS = functional near- 
infrared spectroscopy, y = years, INS = interpersonal neural synchronization. 
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3.2.1. Robust spatial convergence of INS revealed by fMRI hyperscanning 
studies 

The ALE INS map revealed a mainly cortical distribution focused on 
right-sided parieto-temporal-insular brain areas. After applying stan-
dard voxel-level thresholding (p < .001, uncorrected), two clusters with 
significant spatial convergence emerged in the rTPJ and right STG. 
Applying a more liberal threshold (p < .01) (Eklund et al., 2016), we 
observed increased cluster sizes and an additional cluster in the right 
insula (Fig. 3A, Table S5). Sensitivity analyses confirmed robust spatial 
convergence of INS in the rTPJ by showing that the cluster (i) remained 
after excluding pseudohyperscanning experiments (Figure S3A, 

Table S5), (ii) was stable against the exclusion of single experiments 
using a jackknife approach (12 of 22 experiments contributed relevantly 
to the cluster with a maximum contribution of 16%; Supplement 2.1.1; 
Table S1, Fig. 3A), and (iii) was robust against the potential influence of 
publication bias (Acar et al., 2018) (fail-safe-N of 66; Supplement 2.1.2). 
The right STG and insular clusters did not prove stable in these analyses. 

3.2.2. Spatial convergence of INS revealed by fNIRS hyperscanning studies 
Meta-analytic evaluation of fNIRS data revealed four significant 

parcels covering the right inferior temporal gyrus (4/19 INS channels/ 
total channels, n = 1339 subjects, p = .017), left inferior frontal gyrus 

Fig. 3. Brain-functional INS correlates resulting from fMRI and fNIRS meta-analyses with their neuronal connectivity and neurobehavioral association patterns. A: 
Results of the main fMRI INS meta-analysis. Upper: Unthresholded Z-map derived from ALE p values. Middle/lower: Significant INS clusters after thresholding using 
voxel-level thresholds of either p < .001 or p < .01. Black overlays: Spatial conjunctions of all maps derived from jackknife analyses. B: Upper: Parcel-wise fNIRS INS 
results. Colors: Number of “INS channels” relative to all channels sampled in the region, multiplied by the total number of subjects involved in the contributing 
experiments. Red outlines: Parcels showing p < .05 estimated in the permutation test. Lower: Results of a preliminary ALE analysis of the combined fMRI and fNIRS 
data. Black outlines: Significant parcels estimated in the fNIRS-only analysis. C: Meta-analytic coactivation network using the rTPJ INS cluster as a seed (black 
contour). D: Functional resting-state connectivity between MACM clusters. Colors: Semipartial Pearson correlation coefficients between clusters. Asterisks: Positive 
functional connections significant after Bonferroni correction (p < .05). E: Relationships of the rTPJ cluster and MACM network to major resting-state networks. 
Relative: Proportion of “INS-voxels” within a given network vs. all “INS-voxels”. Absolute: Proportion of “INS-voxels” within a given network vs. all voxels within the 
network. Bold print: p < .05. * : q < .05. F: Functional decoding of INS-related activation using Neurosynth topics. Three alternative approaches are presented: x-axis: 
Z-transformed, FDR-corrected p values derived from decoding of the rTPJ cluster using reverse inference, P(Topic|Activation); y-axis: similar but with forward 
likelihood, P(Activation|Topic) > P(Activation). Point sizes and colors: Nonparametric p values according to Spearman correlations between whole-brain INS dis-
tribution and meta-analytic topic maps (*: q < .05). Dashed lines: Alpha level of q < .05. All FDR-corrected significant topics are annotated. Abbreviations: fMRI 
= functional magnetic resonance imaging, fNIRS = functional near-infrared spectroscopy, INS = interpersonal neural synchronization, ALE = activation likelihood 
estimation, MACM = meta-analytic connectivity modeling, RSFC = resting-state functional connectivity, r/lTPJ = right/left temporoparietal junction, rSTG = right 
superior temporal gyrus, rIns = right insula, r/lPFCIns = right/left prefrontal cortex-insula, SMA = supplementary motor area, r/lTh = right/left thalamus, r/lIPL 
= right/left inferior parietal lobule, lPrec = left precuneus, DAN/VAN = dorsal/ventral attention network, SMN = somatomotor network, VN = visual network, DMN 
= default mode network, FPN = frontoparietal network, LN = limbic network. 
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(IFG; 11/56, n = 2205, p = .020) and superior parietal gyrus (3/5, n =

154, p = .047), as well as right STG that overlapped with the fMRI- 
derived rTPJ cluster (5/35, n = 2145, p = .048; Figs. 3B and S5A, 
Table S5). None of the derived exact p values survived FDR correction. 
An exploratory ALE analysis, including combined INS coordinates from 
22 fMRI and 60 fNIRS experiments, resulted in four significant clusters 
covering the rTPJ, left anteroventral superior frontal gyrus, and right 
middle and superior frontal gyri (Fig. 3B, Table S5). The fNIRS studies 
contributed to both the prefrontal clusters and the rTPJ cluster 
(Tables S1 and S2). Evaluation of alternative indices derived from fNIRS 
data further pointed to bilateral prefrontal and left temporoparietal 
brain regions (Supplement 2.2.1, Figure S5A and B, Table S6). Sensi-
tivity analyses, accounting for bias in study selection and spatial un-
certainty of fNIRS data, demonstrated generally comparable patterns. 
However, concerning the fNIRS-only meta-analysis, the left superior 
frontal cluster showed the highest stability, while, in the combined 
fNIRS-fMRI meta-analysis, left superior frontal and rTPJ were the most 
stable locations (Supplement 2.2.2–3, Tables S1, S2, and S5, Fig. S5). 

Summarizing, in line with prior findings and models of INS, we 
identified the rTPJ as a robust and task domain-general hub region of 
INS supported by both fMRI and fNIRS data. FNIRS meta-analysis 
additionally indicated involvement of the left inferior PFC in INS. 

3.3. INS-related neuronal connectivity and biobehavioral association 
patterns 

To establish the functional context of the identified INS hub region 
within large-scale brain networks and biobehavioral domains, we con-
ducted a set of brain- and task-functional association analyses capital-
izing on different open neuroimaging databases (Fig. 1). First, a MACM 
network of brain regions likely to co-activate with the rTPJ hub was 
constructed from the BrainMap database (Laird et al., 2011) and RSFC 
patterns within this network were evaluated (Van Essen et al., 2013; 
Whitfield-Gabrieli and Nieto-Castanon, 2012). To then explore the 
functional context of the observed activation patterns and aid inter-
pretation, we characterized relationships to established brain-wide 
resting-state networks (Yeo et al., 2011; Chen et al., 2018), biobehav-
ioral domains in the Neurosynth database (Yarkoni et al., 2011), and 
previously published meta-analytic networks of INS-associated con-
structs, i.e., social interaction (Feng et al., 2021), empathy and ToM 
(Schurz et al., 2021), and predictive coding (Ficco et al., 2021). Finally, 
we assessed how the rTPJ cluster related to a parcellation of the rTPJ 
(Bzdok et al., 2013). 

3.3.1. Task-based coactivation and resting-state connectivity networks 
148 BrainMap studies reported at least one activation focus within 

the rTPJ cluster. The meta-analytic coactivation network involved pri-
marily bilateral frontotemporal cortical regions, with the largest clusters 
placed on bilateral TPJs, insulae and dorsolateral PFCs, supplementary 
motor areas, and thalami (Fig. 3C, Table S5). Within this network, RSFC 
was strongest between temporoparietal clusters, while subcortical re-
gions showed functional connections primarily to insulae but not to the 
TPJ hub regions (Fig. 3D). An additional analysis controlling for baseline 
activation probability also indicated the TPJs as unique hub regions of 
the observed INS-related network (Supplement 2.3.1, Figure S3B). 
Comparing whole-brain patterns of INS-ALE maps and MACM maps, 
bilateral TPJs, insulae, and dorsal PFCs showed the highest activation 
likelihood in both maps, indicating a possible role of the MACM network 
in INS beyond the rTPJ activation (Supplement 2.3.2, Figure S3C). In 
line with interregional connectivity patterns, the rTPJ cluster and the 
associated coactivation network showed the strongest spatial associa-
tions to the default mode and attention resting-state networks (Supple-
ment 2.4, Fig. 3E). 

3.3.2. Functional decoding of INS-related networks 
We observed significant associations between the rTPJ and topics 

related to ToM, action, observation, and social interaction. On the 
whole-brain level, the strongest associations were found with topics 
related to attention and sensory domains (Fig. 3F, Table S7). In line with 
that, INS-associated activation showed a general alignment with (af-
fective) ToM and social interaction networks, and relatively greater 
overlap with the posterior rTPJ subunit, which itself had previously 
been related to ToM and social cognition (Bzdok et al., 2013). While the 
predictive coding network did not include the rTPJ, it strongly resem-
bled the INS-related MACM network (Figure S4). 

In summary, spatial associations analyses embedded meta-analytic 
INS results in the context of large-scale brain networks mainly related 
to attentional, sensory, and mentalizing processes. While the TPJs again 
emerged as hub regions, we cannot exclude the possibility that INS may 
also be present in the extended INS-related network involving mainly 
the insulae, PFCs, and potentially thalami. 

3.4. Relationships of INS with neurophysiological brain systems 

To extend our meta-analytic approach from the macroscale level of 
brain regions to meso- and microscale neurophysiological functions, and 
thereby identify biological processes potentially underlying INS, we 
conducted a series of whole-brain spatial association analyses. We first 
assessed relationships between INS and neurotransmitter systems by 
spatial correlations with neurotransmitter atlases (Dukart et al., 2021; 
Markello et al., 2022; Hawrylycz et al., 2012). Using GCEA, we identify 
INS-related neuronal cell types (Darmanis et al., 2015; Lake et al., 2016; 
Wang et al., 2018), tested for potential gene-mediated associations be-
tween INS and psychopathology (Piñero et al., 2020), quantified the 
regional enrichment of INS-related genes across neurodevelopment 
(Miller et al., 2014; Grote et al., 2016), and identified INS-related mo-
lecular processes (Ashburner et al., 2000; Fulcher et al., 2021; The Gene 
Ontology Consortium et al., 2021). 

3.4.1. Spatial associations with neurotransmitter systems and neuronal cell 
types 

We observed significant positive spatial associations between INS 
and the distributions of GABAergic (GABAA) and glutamatergic 
(mGluR5) receptors as well as between INS and synaptic density (SV2a). 
Without FDR correction, INS was further associated with serotonergic 
(5-HT2A) and cholinergic components (M1; Figs. 4A and S6). The 
remaining neurotransmitter atlases were not significantly associated 
(Figure S6, Table S8). Furthermore, GCEA indicated significant associ-
ations with a specific excitatory neuron class, Ex3 (Z = .36, p < .001,
q < .001), and two classes of inhibitory neurons, In5 (Z = .12, p < .001,
q = .012) and In6 (Z = .19, p = .001, q = .032; Fig. 4B, Table S9). In 
the original publication that identified the applied cell markers (Lake 
et al., 2016), Ex3 was enriched in visual brain areas and cortical layer IV, 
and classified as granule neuron. In5 and In6 were widely distributed, 
concentrated in layers II/III (In5) and IV/V (In6), and the latter was 
identified as the parvalbumin-expressing interneuron subclass. Domi-
nance analysis including all FDR-corrected significant nuclear imaging 
and cell type maps indicated an overall explained variance of 31.4% 
with the strongest relative contributions by Ex3 (26.2%), followed by 
GABAA (19.8%) and mGluR5 (18.5%; Fig. S8). 

Further sensitivity analyses targeting neurotransmitter associations 
showed (i) that additional adjustment for functional baseline activation 
rate generally led to a slight increase in effect sizes (Table S8), (ii) that 
only the associations with GABAA and SV2a remained significant after 
exclusion of subcortical parcels to estimate effects of a potential cortical- 
subcortical density gradient in the neurotransmitter data (Table S8), and 
(iii) that the GABAA-association was replicated in mRNA expression data 
(Fig. S7, Table S8). The latter pointed to a relationship between INS and 
genes coding for the α1-GABAA receptor subunit and parvalbumin 
(Supplement 2.5.1). 
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3.4.2. Spatial associations with developmental gene expression, genetic 
disease markers, and molecular processes 

Significant developmental gene enrichment was found in 29 cate-
gories revealing a gene expression pattern that was pronounced in adult 
cortical sensory brain areas but was detectable from the postnatal stage 
(Fig. 4C, Table S9). Of note, we found no significant enrichment pre-
natally or in subcortical areas. Furthermore, INS was strongly related to 

genes previously associated with neurodevelopmental disorders and 
secondary with affective disorders (9/16 and 5/16 unique significant 
categories, respectively; Fig. 4D, Table S9). Finally, semantic clustering 
analyses (Reijnders and Waterhouse, 2021) based on 474 GO categories 
spatially associated with the INS distribution (Table S9) indicated pro-
cesses related to neuron and general cell development, and neuronal 
signal transmission (Table S10, Fig. S8). 

Fig. 4. Spatial associations of INS to neurotransmitter receptor and synaptic density distributions, as well as genetic markers of neuronal cell types, brain devel-
opment, and psychiatric disorders. A: Correlation of the whole-brain INS Z-map (x-axis) with in vivo nuclear imaging-derived neurotransmitter receptor and synaptic 
density (SV2a) distributions. Statistics: Partial Spearman correlations between INS and nuclear imaging maps adjusted for local grey matter volume with exact p 
values estimated via nonparametric permutation corrected for spatial autocorrelation. Points: Value pairs associated representing 116 whole-brain parcels. Point size 
and color: p values derived from the fNIRS INS meta-analysis as shown in the upper panel of Fig. 2B. The two yellow and the rightmost points correspond to the 
significant fNIRS atlas parcels. White points: Parcels not included in the fNIRS analysis. Lines: Linear regression lines with 95% confidence intervals. B, C, and D: 
Spatial associations of INS to postmortem mRNA expression distributions estimated by GCEA. Bar plots: Associations of INS with neuronal cell type markers (B) and 
disease markers (D). Bars: Average Z-transformed Spearman correlation coefficients of all genes annotated to a category. Bar color: Uncorrected p values. For cell 
types (B), all categories are shown, and those significant at FDR-corrected p < .05 are highlighted. For disease markers (D), only significant categories are shown. 
Brackets: Categories comprising exactly the same genes. C: INS-related regional developmental gene enrichment across five developmental stages (y-axis) and 16 
brain regions (x-axis). Point size: Average r-to-Z transformed correlation coefficients. Point color: Uncorrected p values. Rectangles: Categories significant after FDR 
correction. Abbreviations: INS = interpersonal neural synchrony, ALE = activation likelihood estimation, OFC = orbital frontal cortex, MFC = anterior (rostral) 
cingulate (medial prefrontal) cortex, DFC = dorsolateral prefrontal cortex, VFC = ventrolateral prefrontal cortex, M1C = primary motor cortex, S1C = primary 
somatosensory cortex, STC = posterior (caudal) superior temporal cortex, ITC = inferolateral temporal cortex, IPC = posteroventral (inferior) parietal cortex, A1C 
= primary auditory cortex, V1C = primary visual cortex, HIP = hippocampus, MD = mediodorsal nucleus of thalamus, STR = striatum, AMY = amygdaloid complex, 
CBC = cerebellar cortex, GCEA = gene category enrichment analysis. 
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Concluding, our results pointed towards a neurophysiological basis 
of INS consisting of major inhibitory and excitatory neuronal systems 
involved in sensory processing. In line with that, INS-related genes (i) 
were most expressed in cortical sensory brain areas starting in postnatal 
brain development and (ii) have previously been related to primarily 
neurodevelopmental disorders. 

4. Discussion 

In recent years, synchronization of brain activities between inter-
acting partners has been acknowledged as a central mechanism by 
which we foster successful social relationships as well as a potential 
factor involved in the pathogenesis of diverse neuropsychiatric disor-
ders. Based on the results generated by our multimodal data fusion 
approach (see Fig. 5), we hypothesized that human INS is tightly linked 
to social attentional processing, subserved by the rTPJ as a sensory 
integration hub at the brain system level, and potentially facilitated by 
GABA-mediated E/I balance at the neurophysiological level. 

4.1. Brain functional systems facilitating INS 

Our results confirmed the central role of the rTPJ and of the left IFG 
in the facilitation of INS. Both regions have been proposed as central 
hubs of the mutual social attention system, thought to allow for “coupling” 
between interacting partners (Gvirts and Perlmutter, 2020), and of the 
observation-execution/alignment subunit of the social alignment system 
(Shamay-Tsoory et al., 2019). On the whole-brain level, the connection 
to the alignment system was further supported by our data indicating a 
clear association of INS to biobehavioral domains, such as “motion”, 
“action”, “observation”, “imitation”, and “attention”. On the brain 
regional level, we also demonstrated links between the rTPJ and its 
functional connected network with the brain’s attention networks. Here, 
attention might generally enhance the processing of relevant informa-
tion, regulate the overall cortical responsiveness (Lakatos et al., 2008), 
and may more specifically increase the computational weight of pre-
diction error units via synaptic gain enhancement (Kok et al., 2012). 
Both, the rTPJ and the associated network, were further linked to the 
default mode network as well as networks associated with ToM and 

social interaction and showed strong associations with ToM-related 
terms (e.g., "mind”, “social”, and “interaction”). Consistent with the 
previously reported twofold functional specialization of the rTPJ (Bzdok 
et al., 2013), our findings highlight the link between interpersonal 
synchronization and both alignment of behavior (Shamay-Tsoory et al., 
2019) as well as alignment of mental states (i.e., ToM) (Gallotti et al., 
2017). Thus, our ALE findings are largely in line with the assumptions of 
the mutual prediction theory suggesting that on the brain network level, 
INS might reflect the sum of brain activity involved in encoding 
self-behavior (e.g., right-sided anterior insula) (Seth et al., 2012), 
other’s behavior and mental state (e.g., rTPJ), and dynamic interper-
sonal alignment (e.g., left IFG). 

While the most robust effect was found in the rTPJ, the left IFG 
became evident as an additional region of convergence when findings 
from fNIRS hyperscanning experiments were included. The IFG might be 
involved in both simple mirroring of behavior and brain activities 
(Hasson and Frith, 2016) and facilitating dynamic interpersonal align-
ment, e.g., by containing motor representations of actions (Sha-
may-Tsoory, 2021; Shamay-Tsoory et al., 2019). While all three 
components of the social alignment system have been proposed to be 
involved in INS (Shamay-Tsoory et al., 2019), we found evidence only 
for INS in the alignment subsystem but not in the misalignment-detection 
and reward sub-systems. Although these latter systems might also be 
involved in social alignment processes (Shamay-Tsoory et al., 2019), our 
finding could indicate that they might not necessarily exhibit synchro-
nized neural activity. The question of whether systems underlying 
misalignment detection and experienced reward mainly form and moti-
vate biobehavioral synchrony or actually become activated simultaneously 
in interacting individuals will have to be addressed in future research. 

Given our approach of searching for the common spatial correlate of 
INS across a wide range of study types, tasks, analysis protocols, and 
social interaction settings, two aspects deserve further consideration. On 
the one hand, based on our results, we cannot draw conclusions about 
situation-specific spatial INS patterns that might occur bound to specific 
interaction settings. On the other hand, the identified brain regions 
might be considered core regions of INS that simultaneously activate in 
interacting humans independent of the specific interaction context. 
Reiterating the aforementioned connection to attentional processing 
and the social alignment system, and referring to the following discussion 
on potential neurophysiological mechanisms, we hypothesize that a core 
component of social interaction must be a system that supports the 
reciprocal alignment of attention and sensory processing between 
interacting people. INS in the core brain areas supporting these cognitive 
functions might represent this mutual alignment process, thus repre-
senting the correlate of successful interpersonal communication. 

4.2. Comparing fMRI and fNIRS approaches to measuring INS 

Given the currently available data and the meta-analytic methods 
applied, our study is not suited to rule out the possibility that INS is 
present in a larger network but was not detected in these other areas. 
Relatedly, we also found no evidence for prefrontal INS based on fMRI 
hyperscanning data alone. Comparing specific confounds affecting the 
comparison between fNIRS and fMRI data, we noted that the fNIRS data 
had only limited cortex coverage and prefrontal regions were relatively 
oversampled. Furthermore, fNIRS data shows higher spatial uncertainty 
resulting mainly from variations in head shape, virtual registration 
methods, and post-hoc reconstruction of probe coordinates (Aasted 
et al., 2015; Cooper et al., 2012; Tsuzuki et al., 2007; Tsuzuki and Dan, 
2014) and lower image quality due to limited methodological stan-
dardization (Tachtsidis and Scholkmann, 2016). On the other hand, 
upright body posture has been shown to affect body physiology, brain 
activation, and cognitive performance, potentially increasing the 
ecological validity of fNIRS to capture neurophysiological processes 
underlying social interactions (Thibault and Raz, 2016). In addition to 
several methodological differences inherent to fMRI and fNIRS 

Fig. 5. Summary of results and hypotheses. Abbreviations: INS = interpersonal 
neural synchronization, DAN/VAN = dorsal/ventral attention network, DMN 
= default mode network, ToM = theory of mind network, TPJ 
= temporoparietal junction, IFG = inferior frontal gyrus, dm/vmPFC 
= dorsomedial/ventromedial prefrontal cortex, AI = anterior insula, PMC 
= premotor cortex, IPL = inferior parietal lobule, OFC = orbitofrontal cortex, 
VS = ventral striatum, OXT = oxytocin, E/I = excitation/inhibition balance. 
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(Czeszumski et al., 2020), variation may also stem from differing 
experimental designs and settings. First, experimental designs allowed 
generally only for limited face-to-face contact in both modalities, how-
ever only fNIRS experiments could establish real-life interactional set-
tings. Second, while both hyperscanning techniques covered a similarly 
broad spectrum of task domains with communication tasks being most 
prevalent, a bias was found toward more joint attention tasks for fMRI 
experiments and toward cooperation/competition conditions for fNIRS 
experiments. Keeping in mind these limitations but considering that our 
fNIRS hyperscanning dataset far exceeds its fMRI pendant in terms of 
sample size (3721 versus 740 subjects), the prefrontal activation 
observed in fNIRS data might indeed arise from interpersonal collabo-
ration paradigms (Czeszumski et al., 2022) which should be tested in 
future fMRI hyperscanning research. 

4.3. Future pathways for the hyperscanning research field 

We identified several pathways that can be built upon in the future. 
Methodologically, it seems mandatory for the field to move toward 
standardized and reproducible data acquisition, task protocols, and 
analysis pipelines (Yücel et al., 2021). Dissecting the definition of 
interpersonal synchronization both in a methodological and in a concep-
tual sense (Schirmer et al., 2021) will help us delineate the brain 
regional and behavioral domain-dependent nuances of INS. To (i) ensure 
that the phenomenon of INS goes beyond the representation of shared 
sensory environments, (ii) delineate the interaction between behavioral 
interpersonal synchronization and INS, and (iii) facilitate effective 
interpretation and formulation of predictions for future research, care-
fully designed experiments, including multimodal (behavior, body, and 
brain) data collection and integrative data analysis within a neuro-
cognitive framework, constitute necessary steps for the future (Hamil-
ton, 2021). As the current state of the fMRI hyperscanning field did not 
allow us to conduct meta-analyses that differentiate task domains or 
examine the influence of, e.g., sex, gender, and age, the impact of these 
factors on INS will have to be clarified in future meta-analyses. Most 
studies included here focused on temporal synchrony between homol-
ogous brain regions or on the univariate coherence between one region 
and multiple other regions. Analogous to the development of “tradi-
tional” fMRI research, moving toward network-based analyses in which 
functionally connected networks are tracked across subjects (Gerloff, 
Konrad et al., 2022) will elucidate the role of the rTPJ and its functional 
connections between individuals. Furthermore, while the current 
meta-analysis of fNIRS data was focused on spatial information, our 
openly accessible dataset could easily be extended to include statistical 
information, thus enabling regional effect size-based meta-analyses 
(Czeszumski et al., 2022). 

4.4. GABA-mediated E/I balance as a potential mechanism underlying 
INS 

To generate hypotheses on the neurophysiological processes under-
lying INS, we developed and applied state of the art data fusion methods 
drawing robust spatial associations between whole-brain INS patterns 
and potentially underlying cellular, molecular, and genetic systems 
(Hansen et al., 2022; Dukart et al., 2021; Markello et al., 2022; Fulcher 
et al., 2021; Lotter et al., 2022; Lotter and Dukart, 2022). We note, 
however, that our inferences are based on spatial correlation analyses 
involving heterogeneous data obtained from often relatively small 
samples and, thus, must be treated cautiously. These analyses, by no 
means, provide a reliable basis for causal claims and cannot replace 
nuclear imaging methods, brain stimulation protocols, pharmacological 
investigations, or histological approaches. We nevertheless consider 
these analyses to be sufficient to provide a basis for future 
hypothesis-driven research based on the currently available hyper-
scanning data. 

We found converging evidence for an association of spatial INS 

patterns with GABAA receptors and layer IV/V interneuron density, 
suggestive of (“fast-spiking”) parvalbumin-expressing interneurons. 
These interneurons constitute the largest group of cortical inhibitory 
neurons (Tremblay et al., 2016), contribute to feedback and feedforward 
inhibition, and are critically involved in the generation of network os-
cillations (Hu et al., 2014). In accordance with the association between 
INS and attention systems, GABAergic neurotransmission has previously 
been linked to general attentional processing and to visual attentional 
selectivity in particular (Lockhofen and Mulert, 2021). Furthermore, 
parvalbumin-expressing interneurons, along with layer V pyramidal 
cells, have been shown to express 5-HT2A receptors which we also found 
spatially related to INS (Andrade and Weber, 2010). Together with Ex3 
(“granule”) excitatory neurons, which explained the largest amount of 
spatial INS information in the present study and were also located in 
cortical layer IV (Lake et al., 2016), these INS-associated neuron classes 
may form thalamocortical feedforward inhibition circuits (Tremblay et al., 
2016) between thalamocortical afferents (Sherman and Guillery, 2002), 
GABAergic interneurons, and pyramidal cells which have crucial roles in 
encoding spatial and temporal sensory information (Gabernet et al., 
2005; Tremblay et al., 2016). Relatedly, layer IV neurons have previ-
ously been linked to computation of prediction errors (Bastos et al., 
2012). Finally, in line with the potential relevance of thalamocortical 
neuronal circuits, the INS-associated meta-analytic network involved 
the bilateral thalami as the sole subcortical structures. 

Here, we could not confirm the involvement of oxytocin and dopa-
mine in neurobiobehavioral synchrony that was hypothesized previ-
ously (Feldman, 2017; Gvirts and Perlmutter, 2020; Mu et al., 2016). In 
contrast, we consider our findings to be more in line with the hypothesis 
that INS relies on neurobiological mechanisms similar to those previ-
ously reported for within-brain synchronization processes: GABA-me-
diated E/I balance (Sears and Hewett, 2021). Given links between 
GABAergic interneurons and local gamma oscillations (Gonzalez-Burgos 
and Lewis, 2008) as well as between local oscillations, GABA concen-
tration, and long-range functional connectivity (Stagg et al., 2014; 
Rajkumar et al., 2021), we hypothesize that INS might be maintained by 
GABA-regulated signal transmission that relies on thalamocortical 
pathways transferring sensory information obtained during social 
interaction to an INS-associated cortical network centered in the rTPJ. 
Importantly, while we focused on blood oxygenation signals, electro-
physiological studies also localized the source of gamma power syn-
chronization in the TPJ (Hoehl et al., 2021; Kinreich et al., 2017). Of 
note, indirect involvement of oxytocin might be plausible given that 
both oxytocin and GABA signaling may mediate E/I balance in the 
contexts of social interaction and brain development (Lopatina et al., 
2018), that GABAA receptors might have oxytocin binding sites (Gough, 
2015), and that oxytocin regulates GABAA neurosteroid binding and 
expression patterns (Kaneko et al., 2016; Koksma et al., 2003). 

The indirect nature of our evidence for INS mediation by GABAergic 
signaling and E/I balance requires thorough confirmation or falsifica-
tion with experimental data. Future electrophysiological, and especially 
magnetoencephalography-based (Watanabe et al., 2022) hyperscanning 
experiments could investigate the role of E/I balance in the development 
of INS. GABAergic involvement as well as regulatory mechanisms could 
be tested using pharmacological challenges with safe 
oxytocin-regulating or GABA-regulating agents (Zhang et al., 2020) or 
multibrain stimulation protocols to show causal roles in the regulation 
and maintenance of human INS. 

4.5. Associations to neurodevelopment and neurodevelopmental disorders 

We demonstrated that genes which’s spatial expression pattern 
aligned with the INS distribution were expressed particularly in cortical 
sensory brain areas starting at the postnatal stage. The GABAergic sys-
tem undergoes significant changes in early postnatal development, 
switching from excitatory to inhibitory action, thus establishing E/I 
balance (Lopatina et al., 2018), enabling intrapersonal cortical 
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synchronization (Warm et al., 2022), and potentially also INS. If the 
observed developmental gene expression pattern reflects the develop-
ment of this neurophysiological system, it might indicate long-lasting 
plasticity in this system; however, it is also compatible with ideas 
about neurobiological instantiation through early postnatal 
infant-caregiver interactions (Feldman, 2017). 

We observed gene-mediated spatial associations of INS with psy-
chopathology, i.e., primarily with disordered language development, 
general neurodevelopment, and schizophrenia spectrum disorders and, 
secondarily, with affective disorders. Indeed, both developmental and 
affective disorders have been suggested as disorders of social interaction 
(Schilbach, 2016; Kruppa et al., 2021) and a prior study reported 
reduced INS during interaction between people with and without autism 
spectrum disorder (Tanabe et al., 2012). Moreover, autism and schizo-
phrenia spectra have repeatedly been linked to disrupted GABA 
signaling and E/I balance (Gonzalez-Burgos and Lewis, 2008; Tang 
et al., 2021; Lopatina et al., 2018) as well as thalamotemporal functional 
and structural dysconnectivity (Ameis and Catani, 2015; Woodward 
et al., 2017), and GABAergic agents have been shown to affect both 
clinical presentation and brain E/I balance in patients with autism 
(Zhang et al., 2020). Our findings provide further evidence for a path-
ophysiological role of (disrupted) INS in these disorders, with relevance 
for both the identification of social biomarkers and the development of 
neurobiologically based treatment strategies. 

4.6. A multilevel model of human INS 

Taken together, our findings suggest a model of human INS bridging 
multiple levels of organization from social interaction to molecular 
processes (Fig. 5). Interindividual synchrony in humans, as in many 
group-living species, amplifies social rapport and affective bonds and 
arises both intentionally and spontaneously (Hoehl et al., 2021). Our 
actions broadcast our behaviors through the environment, i.e., by mo-
tion, touch, gesture, mimics, speech, or sounds. Our brain’s sensory 
systems, subserved by neuronal attention networks, rhythmically sam-
ple information from the environment and can detect these actions. 
Synchronizing the actions of one individual with the perceptions of 
another and vice versa might then lead to interpersonal synchronization 
of brain oscillations (Hasson and Frith, 2016). From these sensory in-
puts, we not only observe and predict the actions of our interaction 
partner but also infer mental states. The rTPJ may serve as the brain’s 
hub for processing attention information and integrating this informa-
tion into a broader context, communicating with brain networks rele-
vant for controlling selective attention, reactive action, inference of 
mental states, and affective responses (Downar et al., 2000; Bzdok et al., 
2013). Neurophysiologically, these interpersonally synchronized oscil-
lations may, within each brain, arise from GABA-mediated E/I balance, 
receiving sensory input from thalamic afferences. In an attempt to 
incorporate prior hypotheses on the involvement of oxytocin and 
dopamine or of social reward processes (Feldman, 2017; Gvirts and 
Perlmutter, 2020; Shamay-Tsoory et al., 2019), one might now speculate 
that these aspects could act as influencing factors on the rTPJ, func-
tionally associated brain networks, or GABA-mediated neuronal oscil-
lations, without directly partaking in INS (Lopatina et al., 2018; Mu 
et al., 2016). Relatedly, dysregulation of this multilevel representation 
of INS might be involved in the pathophysiology of neurodevelopmental 
disorders (Ameis and Catani, 2015; Gonzalez-Burgos and Lewis, 2008; 
Lopatina et al., 2018; Tang et al., 2021; Woodward et al., 2017; Zhang 
et al., 2020). If further validated and fully understood, our findings may 
lay the foundation of a neurobiologically based concept of “typical” INS, 
with relevance for the study of human social development, communi-
cation, and interpersonal learning processes. Understanding how INS 
works will also help us understand how its mechanisms fail, which might 
have critical implications for how we view and treat disordered social 
interaction on both individual and societal levels. 

Closing and taking a general perspective, our methodological 

approach demonstrated the value of multimodal association analyses 
not only for psychiatric research but also to advance current models of 
cognition in typically developing populations. We designed this study 
with reuse of our resources in mind to provide a path for similar future 
endeavors. 
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Arnatkevic̆iūtė, A., Fulcher, B.D., Fornito, A., 2019. A practical guide to linking brain- 
wide gene expression and neuroimaging data. NeuroImage 189, 353–367. https:// 
doi.org/10.1016/j.neuroimage.2019.01.011. 

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., 
Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., 
Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., 
Sherlock, G., 2000. Gene Ontology: Tool for the unification of biology. Nat. Genet. 
25 (1), 25–29. https://doi.org/10.1038/75556. 

Atzil, S., Gendron, M., 2017. Bio-behavioral synchrony promotes the development of 
conceptualized emotions. Curr. Opin. Psychol. 17, 162–169. https://doi.org/ 
10.1016/j.copsyc.2017.07.009. 

Azen, R., Budescu, D.V., 2003. The dominance analysis approach for comparing 
predictors in multiple regression. Psychol. Methods 8 (2), 129–148. https://doi.org/ 
10.1037/1082-989x.8.2.129. 

Babiloni, F., Astolfi, L., 2014. Social neuroscience and hyperscanning techniques: Past, 
present and future. Neurosci. Biobehav. Rev. 44, 76–93. https://doi.org/10.1016/j. 
neubiorev.2012.07.006. 

Babiloni, F., Cincotti, F., Mattia, D., De Vico Fallani, F., Tocci, A., Bianchi, L., Salinari, S., 
Marciani, M.G., Colosimo, A., Astolfi, L., 2007. High Resolution EEG Hyperscanning 
During a Card Game. 2007 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 
4957–4960. https://doi.org/10.1109/IEMBS.2007.4353453. 

Baskerville, T.A., Douglas, A.J., 2010. Dopamine and oxytocin interactions underlying 
behaviors: Potential contributions to behavioral disorders. CNS Neurosci. Ther. 16 
(3), e92–e123. https://doi.org/10.1111/j.1755-5949.2010.00154.x. 

Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J., 2012. 
Canonical microcircuits for predictive coding. Neuron 76 (4), 695–711. https://doi. 
org/10.1016/j.neuron.2012.10.038. 
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