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Abstract  

Human brain morphology undergoes complex changes over the lifespan. Despite recent 

progress in tracking brain development via normative models, current knowledge of underlying 

biological mechanisms is highly limited. We demonstrate that human cerebral cortex development 

unfolds along patterns of molecular and cellular brain organization, traceable from population-level 

to individual developmental trajectories. During childhood and adolescence, cortex-wide spatial 

distributions of dopaminergic receptors, inhibitory neurons, glial cell populations, and brain-met-

abolic features explain up to 50% of variance associated with regional cortical thickness trajecto-

ries. Adult cortical change patterns are best explained by cholinergic and glutamatergic neurotrans-

mission. These relationships are supported by developmental gene expression trajectories and 

translate to longitudinal data from over 8,000 adolescents, explaining up to 59% of developmental 

change at population- and 18% at single-subject level.  Integrating multilevel brain atlases with 

normative modeling and population neuroimaging provides a biologically meaningful path to un-

derstand typical and atypical brain development in living humans. 

 

 

 

Keywords: Neurodevelopment; Cortex; Cortical thickness; Normative modeling; Longitudinal; 

Nuclear imaging; Neurotransmitters; Neuronal cell types; Dominance analysis
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1. Introduction 

The human cerebral cortex develops in complex patterns1–3, giving rise to our cognitive 

abilities4. Biologically, these morphological changes are likely driven by developmental processes 

on different organizational levels. Cellular processes, e.g., myelination, synaptic remodeling 

(“pruning”), as well as neuronal and glial proliferation, have been discussed as the main drivers of 

cortical thickness (CT) development5–8. However, the mechanisms that drive lifetime CT changes 

might extend beyond cellular densities to more functional properties, such as metabolism, immune 

responses, and neurotransmitter signaling. Crucially, cellular densities and functional properties – 

hereafter collectively referred to as “(multilevel) neurobiological markers” – are not uniform across 

the cortex, but show distinct spatial distributions9,10. Assuming that CT changes over the lifespan 

are shaped by activity, development, or degeneration of cell populations and molecular processes, 

it is to be hypothesized that the spatiotemporal patterns of CT development colocalize with non-

pathological adult spatial distributions of the respective neurobiological marker11,12. Increased col-

ocalization of CT changes with an individual marker at a given developmental period would then 

support a role of the associated cell population or process in respective CT changes5,13. Supporting 

this notion, spatial patterns of CT development as measured with magnetic resonance imaging 

(MRI) are correlated with adult distributions of glial cells, pyramidal neurons, and neuronal cell 

components11,12,14–17. To derive cortical atlases of neural cell populations or their components, prior 

research has mostly relied on postmortem gene expression data from the Allen Brain Atlas18. How-

ever, such ex vivo data may only poorly represent the in vivo expression patterns for many genes19. 

Neurodevelopmental disorders are associated with both deviations in brain structure20–22 

and dysfunction of several neurotransmitter systems23,24, but suffer from a lack of reproducible 

biomarkers and little clinical translation of neuroimaging research25. It stands to reason that a better 

understanding of the processes underlying typical neurodevelopment can also shed light on poten-

tial neuropathology. Recently published large-scale normative models of human structural brain 

development1,3 represent an important step in the study of both population-level typical and indi-

vidual atypical neurodevelopment26,27. Similarly, our understanding of brain organization was sig-

nificantly advanced by the availability of modern in vivo nuclear imaging atlases28,29, explaining 

disordered brain structure to greater extents as compared to MRI-based brain structural and func-

tional metrics30. 
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Our current knowledge on biological factors that guide typical human cortex development 

is severely limited by practical obstacles. Yet this knowledge is necessary to understand atypical 

neurodevelopment and develop targeted biomarkers and treatments. Multimodal neuroimaging-

based spatial association approaches can provide a window into specific biological mechanisms, 

but until now were limited to postmortem data and the cellular level. Combining these approaches 

with to date’s availability of large-scale normative models and in vivo derived molecular brain 

atlases constitutes the next major step in the imaging-based study of human brain development 

(Fig. 1). If translated to the level of the individual subject, it can serve as the foundation for future 

neuroimaging-based yet biologically interpretable biomarkers to be tested for their clinical poten-

tial28,31,32.  

2. Results 

2.1. Mapping neurobiological markers to cortical development 

In this work, we explored if and to what extent cortical distributions of neural cell popula-

tions and molecular processes can explain spatiotemporal patterns of CT change throughout the 

lifespan. For this, we gathered 49 postmortem and in vivo brain atlases mapping neuronal and glial 

cell populations33,34,18, cortical microstructure29, as well as neurotransmitter receptors, brain me-

tabolism and immunity28,29,35 in independent healthy adult samples (Fig. 1A; sources and pro-

cessing: Ext. Data Tab. 1, Suppl. Text S1.1.1 and 2; surface plots: Ext. Data Fig. 1; temporal sta-

bility during adulthood: Text S1.1.3 and Fig. S1). The analytic approach taken here establishes 

associations between temporospatial CT (change) patterns and brain atlases based on the similarity 

of whole-brain spatial patterns. Intercorrelation arising from spatial patterns shared between atlases 

on either cellular or molecular levels was reduced by factor analyses applied independently to cel-

lular and molecular markers (see Methods). This process resulted in 10 “factor-level” nuclear im-

aging maps (ni1–10), 10 gene expression cell marker maps (ce1–10), and an MRI-derived marker 

of cortical microstructure (T1/T2 ratio; mr1) which were named based on the most closely related 

original atlases (Ext. Data Fig. 2; Text S1.1.4; Fig. S2). Factor solutions were successfully vali-

dated against permuted brain maps (Text S1.1.5). These factor-level maps represented biologically 

meaningful entities with the first factor capturing the first spatial component of cortical transmitter 

systems (ni1), followed by more specific factors broadly representing serotonergic (ni2), dopamin-

ergic (ni3, ni9), and cholinergic systems (ni5) as well as brain metabolism (ni4, ni6) and immunity 
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(ni7, ni10). Similarly, mRNA expression-derived factors entailed one general neuronal dimension 

(ce1) and several more specific excitatory and inhibitory neuronal (ce4–10) and glial factors (ce2–

3).  

In the following, we report on how these multilevel neurobiological markers colocalize and 

explain CT change patterns between 5 and 90 years of age (Fig 1B), spanning developmental peri-

ods from “middle and late childhood” to “late adulthood” as defined previously9,1 (see following 

Figs.). CT trajectories for 148 cortex regions were derived from a normative model of CT devel-

opment3 estimated from over 58,000 subjects (referred to as “representative” or “modeled” CT; 

Fig. 1B; Text S1.2; age distribution: Fig. S3; CT trajectories: Fig. S4A and Animation S1).  

First, we tested if representative cross-sectional CT at each given time point in life was 

distributed across the cortex in patterns reflecting the distributions of specific neurobiological 

markers (Fig. 1C)12. To further understand the observed developmental associations, we fitted re-

gression models predicting the spatial patterns of modeled longitudinal CT change from neurobi-

ological markers. The outcome was quantified as the overall and marker-wise explained variance 

R2, interpretable as the percentage to which CT change patterns can be explained from multilevel 

markers29,30. We first assessed the combined and individual relevance of all 21 neurobiological 

markers for cortical development (D). After identifying a subset of important markers, we evalu-

ated their role in explaining modeled CT changes while accounting for shared variance (E). Next, 

we utilized developmental gene expression data (F) to validate and further specify our imaging-

based findings (G). Last, we transferred our approach to longitudinal CT data from approximately 

8,000 adolescents36,37 (H) to demonstrate that time period-specific association patterns identified 

using the normative model translate to the individual subject level (I).  
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Fig. 1: Study overview 

The workflow of the present study, from data sources (left side) to data processing and analysis method 
(middle) to the research questions and results (right side). (A) A collection of postmortem cellular and in 
vivo molecular brain atlases was parcellated and dimensionality reduced. (B) “Representative” population-
median CT data was extracted from a normative model. (C) We calculated the colocalization between 
multilevel neurobiological markers and CT at each point throughout the lifespan. (D) We evaluated how 
combined and individual neurobiological markers could explain lifespan CT change. (E) The strongest 
associated markers were examined in detail, accounting for shared spatial patterns. (F) A developmental 
gene expression dataset was used to generate trajectories of gene expression associated with each multilevel 
neurobiological marker. (G) Periods in which CT change was significantly explained were validated in 
developmental gene expression data. (H) Single-subject longitudinal data was extracted from two 
developmental cohorts. (I) Findings based on the normative model were validated in single-subject data. 
Abbreviations: CT = cortical thickness, ABA = Allen Brain Atlas, MRI = magnetic resonance imaging. 
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2.2. Cross-sectional CT shows diverse colocalization trajectories  

Structural patterns resulting from the relative distribution of CT across cortical regions vary 

depending on the time point in life38. Developmental changes of these patterns might mirror the 

contribution of a certain cellular or molecular process to CT changes at a given time point. Using 

spatial Spearman correlations between each multilevel neurobiological marker and modeled CT at 

each timepoint, we revealed diverse colocalization trajectories with a general pattern of strongest 

changes from childhood to young adulthood (up to approximately 30 years) as well as in late adult-

hood (from 60 years onwards; Ext. Data Fig. 3). Colocalization strengths varied across the CT 

percentiles extracted from the normative model, but temporal trajectories were consistent. Sex did 

not relevantly influence the trajectories (Fig. S5). 

2.3. Neurobiological markers explain CT change 

Studying population-level and individual brain development inevitably requires looking at 

respective changes over time, rather than focusing only on cross-sectional data39. We now asked to 

which extent different neurobiological markers explained relative change of representative CT 

across the lifespan and which markers showed the strongest associations (Figs. S4B and S4C). 

Multivariate regression analyses predicting CT change across 5-year periods throughout the 

lifespan (sliding window with 1-year-steps) showed that the combined, either molecular- or cellu-

lar-level, markers explained up to 54% of the spatial variance in representative CT changes with 

peaks during young adulthood (molecular, 20–35 years) and adolescence (cellular, 15–20 years) 

[false discovery-rate (FDR)-corrected; Fig. 2, top]. Individually, 9 of the 21 multilevel neurobio-

logical markers explained up to 15–38% of representative CT change patterns, with most markers 

showing peaks up to young adulthood, i.e., between 5 and 30 years of age (FDR-corrected; Fig. 2, 

bottom). These 9 markers represented major neurotransmitters (dopaminergic, glutamatergic, cho-

linergic, noradrenergic), features of brain metabolism, neuron populations, and glial cells. Com-

bining all 21 markers across biological levels explained up to 67% of CT changes during the ado-

lescence to adulthood transition (Fig. S6). All findings were robust against correction for baseline 

CT as well as changes in sliding window step size, modeled sex, and CT percentile (Figs. S6 and 

S7). 
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Fig. 2: Modeled lifespan CT change patterns explained by multilevel neurobiological markers 

Associations between modeled lifespan CT change and neurobiological markers separated by data sources 
(left vs. right). Developmental periods covered by this study as defined by Kang et al. are shown on top. 
Time periods were aligned to the center of each CT change step (e.g., Δ(5,10) = 7.5). Colored lines show 
the amount of spatial CT change variance explained (y axis) by the combined markers (upper) or each 
marker individually (lower) throughout the lifespan (x axis). Stars indicate significance of each regression 
model estimated with a permutation-based approach; ★: FDR-corrected across all tests shown in each panel 
of the plot; ☆: nominal p < 0.05. To provide an estimate of the actual observed effect size, gray areas show 
the distributions of spatial CT change variance explained by permuted marker maps (n = 10,000). For the 
lower panel, null results were combined across marker maps. See Fig. S4C for all CT change maps, and 
Ext. Data Fig. 2 for all predictor maps. Abbreviations: CT = cortical thickness, PET = positron emission 
tomography, MRI = magnetic resonance imaging, FDR = false discovery rate, SV2A = synaptic vesicle 
glycoprotein 2A, M1 = muscarinic receptor 1, mGluR5 = metabotropic glutamate receptor 5, 
5HT1a/1b/2a/4/6 = serotonin receptor 1a/2a/4/6, CB = cannabinoid receptor 1, GABAa = γ-aminobutyric 
acid receptor A, HDAC = histone deacetylase, 5HTT = serotonin transporter, FDOPA = fluorodopa, DAT 
= dopamine transporter, D1/2 = dopamine receptor 1/2, NMDA = N-methyl-D-aspartate glutamate receptor, 
GI = glycolytic index, MU = mu opioid receptor, A4B2 = α4β2 nicotinic receptor, VAChT = vesicular 
acetylcholine transporter, NET = noradrenaline transporter, CBF = cerebral blood flow, CMRglu = cerebral 
metabolic rate of glucose, COX1 = cyclooxygenase 1, H3 = histamine receptor 3, TSPO = translocator 
protein, Microstr = cortical microstructure, Ex = excitatory neurons, In = inhibitory neurons, Oligo = 
oligodendrocytes, Endo = endothelial cells, Micro = microglia, OPC = oligodendrocyte progenitor cells, 
Astro = astrocytes. 
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2.4. Specific neurobiological markers drive explained CT change 

Next, we sought to understand in detail how the 9 significant neurobiological markers con-

tributed to overall explained CT change while accounting for correlation and shared spatial vari-

ance patterns between molecular and cellular levels. Given that we found both the strongest CT 

changes and CT associations during the period from childhood to young adulthood and given the 

particular clinical relevance of this timespan, we included CT change from 5 to 30 years as an 

additional time window for further testing. Using dominance analyses40,29,30, we found that the 9 

FDR-significant molecular and cellular markers jointly explained 58% of CT change patterns from 

5 to 30 years, peaking at the transition from childhood to adolescence (10–15 years; Fig. 3A, top). 

All 9 neurobiological markers contributed to the overall explained CT change during different life 

periods (nominal p < 0.05) with 6 markers surviving FDR correction (Fig. 3A, middle; Animation 

S2). During childhood and adolescence, 3 of these 6 markers explained most of the spatial CT 

change patterns, representing estimates of dopaminergic receptors (ni9; R2 = 16%; peek at 8–14 

years), microglia and oligodendrocyte progenitor cells (ce3; R2 = 12%; 8–15 years), as well as of 

somatostatin-expressing interneurons (ce8; R2 = 12%; 5–14 years). CT change patterns during 

young and middle adulthood were explained by 2 neurobiological markers broadly associated with 

the major – i.e., dopaminergic, glutamatergic, cholinergic, and noradrenergic – neurotransmitter 

systems (ni3 and ni5; 29–56 years). Finally, late adulthood CT aging patterns were associated with 

a marker representing inhibitory neuron populations and astrocytes (ce4, 78–88 years). Except for 

microglia and oligodendrocyte progenitor cells, all identified associations were negative, i.e., indi-

cating a stronger reduction of CT in areas with higher density of the respective biological marker. 

2.5. Specific cortical regions drive CT change associations 

The spatial associations reported here are likely dominated by some cortical regions relative 

to others. By evaluating the impact of iteratively excluding each region from the multivariate mod-

els, we found that the most influential regions differed depending on the markers. For example, 

cellular markers associated to childhood and adolescence CT development (ce9: somatostatin-ex-

pressing interneurons and ce3: microglia) were driven by premotor, cuneus, and frontopolar areas, 

whereas the association to dopaminergic receptors during this period (ni9) was more influenced by 

primary visual, mid-cingulate, and insular regions. While associations between CT change during 

young and middle adulthood and cholinergic neurotransmission (ni5) exhibited a similar patterns, 

adult colocalization to dopaminergic neurotransmission (ni3) was strongly influenced by sen-

sorimotor areas (Fig. 3B; Text S1.3; Fig. S8; Animation S2). 
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Fig. 3: In-depth analysis of the neurobiological markers most relevant for explaining modeled 

CT change patterns across the lifespan 

(A) Modeled lifespan CT change explained by multilevel neurobiological markers. See Fig. 2 for 
descriptions of global plot elements. Top: overall explained CT change variance, the two colored lines 
highlight contributions of molecular and cellular markers. Middle: Marker-wise contributions to the overall 
explained spatial variance. Note that, as the used total dominance statistic describes the average R2 
associated with each predictor relative to the “full model” R2, the sum of the predictor-wise values at each 
timepoint in the middle plot equals the R2 values expressed in the upper panel. Bottom: Spearman 
correlations between CT change and multilevel markers to visualize the sign of the association patterns. (B) 
Regional influences on explained CT change. Each row shows one of the 9 markers included in dominance 
analyses. Scatterplots: Correlation between CT change at the respective predictor’s peak timestep (y axis) 
and the predictor map, corresponding to panel A-bottom. The first surface shows the residual difference 
maps calculated for each marker, highlighting the most influential regions on CT change association effects. 
For illustration purposes, the second and third surface show CT change and the spatial distribution 
associated with the marker. See Fig. S8 for all residual difference maps, Fig. S4C for all CT change maps, 
and Ext. Data Fig. 2 for all predictor maps. Abbreviations: CT = cortical thickness, see Fig. 2 for 
abbreviations used in neurobiological marker names. 

A B
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2.6. Factor-level markers reflect original brain atlases 

Thus far, we focused on a lower dimensional representation of neurobiological markers, 

which reduced predictor intercorrelation and increased statistical power, as compared to using the 

original 49 brain atlases. Nevertheless, we found that original atlases that were most closely related 

to each factor explained CT change patterns to a similar extent as the factor-level models, aiding 

interpretation and supporting the validity of the factor-level approach (Ext. Data Fig. 4; Text S1.4; 

Fig. S9). All univariate spatial associations between CT change and the tested original atlases 

reached nominal significance (p < 0.05). Separate dominance analyses for each factor-level neuro-

biological marker with only strongly loading original atlases as predictors confirmed contributions 

of specific original atlases to the factor’s peak explained variance: somatostatin-expressing inter-

neurons, dopaminergic D1 and D2 receptors, as well as glucose metabolism and aerobic glycolysis 

accounted for most of the associated markers’ peak effects during childhood and adolescence (ce9, 

ni9, ni4, and ni6). Peak effects during young and middle adulthood were mostly accounted for by 

α4β2 nicotinic receptors and the acetylcholine transporter (ni5) as well as the glutamatergic NMDA 

receptor (ni3; Ext. Data Fig. 4).  

2.7. CT change associations supported by developmental gene expression  

Next, we turned to developmental gene expression9 to confirm that the biological processes 

we found associated with cortical development were indeed upregulated in the cortex during the 

identified developmental period41. From a human postmortem dataset (n = 33, age range 0.33–

82.05 years, see Kang et al.9 for details), we estimated gene expression trajectories across the neo-

cortex corresponding to each original brain atlas relevant for the final 9 factor-level neurobiological 

markers (cf. Ext. Data Fig. 4). For cell-type atlases, we averaged normalized gene expression val-

ues across the respective marker genes33,34. For molecular markers, we selected genes correspond-

ing to each protein(-compound), in addition to two sets of genes associated with brain metabolism42 

(Ext. Data Tab. 1). To pose as little assumptions on the sparse data as possible, we compared each 

gene/gene set during its respective developmental period with a control set of non-brain genes, 

testing (i) if the gene/gene set showed higher mean expression and (ii) if it showed a “peak” in its 

trajectory, quantified as a higher ratio of expression during versus outside the developmental pe-

riod. As expected, most genes/gene sets showed higher mean expression and/or higher expression 

ratios indicating that they were active in cortical tissue or had their individual peak expression 

during the respective developmental period (FDR-corrected; Figs. 4 and S10). Notably, for the two 

molecular markers explaining CT maturation in adulthood (ni3: glutamatergic/ dopaminergic and 
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ni5: cholinergic/ noradrenergic), we found evidence for associations only with dopaminergic D1 

and glutamatergic NMDA receptors for ni3 as well as with the cholinergic α4β2 receptor for ni5. 

Fig. 4: Validation of CT model-based results in developmental gene expression data 

First row: CT change explained by individual neurobiological markers, exactly corresponding to the 
univariate results in Fig. 2. X values are aligned to the fist year of each tested CT change time period (e.g., 
“Δ(5,10)” is aligned to 5 years on the x-axis). Shades following each line visualize other possible 
alignments (e.g., “Δ(5,10)” aligned to 6, 7, 8, 9, or 10 years). Vertical shaded boxes indicate the time period 
in which CT change was explained significantly (FDR-corrected). Following rows: Normalized log2-
transformed gene expression trajectories for maximum 5 original atlases that loaded on the factor-level  
neurobiological marker with λ > |0.3| (cf. Ext. Data Fig. 4). Gene expression for each marker was derived 
from associated individual genes or from averaging across gene sets. Grey dots indicate average neocortical 
expression of individual subjects. Black lines and shades show locally estimated scatterplot smoothing 
(LOESS) curves with 95% confidence intervals. Associations were tested for by averaging the LOESS data 
within and outside of each respective time period and comparing mean and ratio against similar data 
randomly sampled from non-brain genes. ★: FDR-corrected across all tests; ☆: nominal p < 0.05. 
Abbreviations: CT = CT change, adj. = adjusted, FDR = false discovery rate, ns = not significant, see Fig. 
2 for abbreviations used in neurobiological marker names. 
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2.8. Multilevel neurobiological markers explain individual CT trajectories 

The above analyses successfully demonstrated that specific neurobiological markers ac-

count for a large proportion of variance arising from modeled CT change patterns. During the neu-

rodevelopmental period from childhood to young adulthood, 6 markers accounted for about 50% 

of the total variance with D1/2 dopaminergic receptors, microglia, and somatostatin-expressing 

interneurons taking the largest share. Relevance of all these 6 markers during their respective as-

sociated neurodevelopmental periods could be confirmed in independent gene expression data. 

However, a sole focus on population CT change, i.e., median predictions from the normative 

model3, does not allow for inferences about individual-level neurodevelopment, which is the man-

datory prerequisite for potential clinical applications. A successful validation on the individual 

level can also provide further evidence for the potential mechanistic relevance of the identified 

neurobiological markers and supports the use of normative models to non-invasively study neuro-

developmental mechanisms.  

Using 2-to-8-year longitudinal data from two large cohorts36,37, covering the neurodevel-

opmental period from late childhood to young adulthood (ABCD:  n = 6,789; IMAGEN: n = 985–

1117; Demographics and quality control: Text S1.5, Tab. S1, Fig. S11; Observed-vs.-predicted CT 

change patterns and correlations: Figs. S12 and S13; Effects of site on CT and CT change: Tabs. 

S2 and S3), we first confirmed that the colocalization between cross-sectional single-subject CT 

and neurobiological markers mirrored the patterns observed for the modeled population-average 

(Figs. S5 and S14). In line with these findings, the cohort-average relative change of CT across 

study timespans (10–12, 14–22, 14–19, and 19–22 years) was explained to extents comparable with 

the normative model (minimum/maximum observed R2 = 25/56%, model-prediction R2 = 47/56%; 

Fig. 5A upper and middle). These patterns translated to the single-subject level, explaining on av-

erage between 9 and 18% in individual CT changes with considerable variability (range R2 = 0–

59%; Fig. 5A, lower; Ext. Data Fig. 5). Looking at individual marker-wise contributions, we again 

found the model-based patterns to be reflected on both cohort-average and single-subject levels 

(Fig. 6B; Ext. Data Fig. 5; Fig. S15). While the neurobiological markers predicted to be most im-

portant (D1/2 and microglia) indeed explained significant amounts of CT change, two other mark-

ers, which primarily reflected aerobic glycolysis (ni4) and granule neurons (ce5), were equally 

dominant. Sensitivity analyses showed that CT change predictions (i) generalized from the norma-

tive data to individual subjects with above-chance performance but were a poor fit for many indi-
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viduals, underscoring our focus on individual differences (Text S1.6; Fig S16), (ii) were not rele-

vantly influenced by the reference model-based site-adjustment (Ext. Data Fig. 5; Fig. S15), (iii) 

increased with longer follow-up duration within each time period (Fig. S17), (iv) varied by sex and 

study site in some tested time periods (Text S1.7; Fig. S18), and (v) varied with individual atypical 

CT development as well as data quality (Text S1.8; Fig. S19). 

Fig. 5: Validation of model-based results in ABCD and IMAGEN datasets 

(A) Explained spatial CT change variance in ABCD and IMAGEN data. The overall model performance is 
illustrated as scatter plots contrasting predicted CT change (y axis) with observed CT change (x axis). 
Scatters: single brain regions, color-coded by prediction error. Continuous line: linear regression fit 
through the observations. Dashed line: theoretical optimal fit. Brains: prediction errors corresponding to 
scatters. Rows: upper = cohort-average predicted by the reference (“Braincharts”) model; middle: observed 
cohort-average; lower: observed single-subject values, one regression model was calculated for each 
subject, but the results were combined for illustration purposes. (B) Explained spatial CT change variance 
with a focus on the individual multilevel markers. Subplots for the combined analysis and each individual 
multilevel marker show: modeled CT change as presented in Fig. 3 (dotted line); observed cohort-average 
CT change (cross markers); and observed single-subject CT change (boxplots and dot markers). For each 
subject, one horizontal line at their individual R2 value ranges from their age at beginning and end of each 
time span. Boxplots show the distribution of individual values for each time span. Note that the first subplot 
(“Combined markers”) corresponds to the data presented in panel A. See Ext. Data Fig. 5 and Fig. S15 for 
detailed results. Abbreviations: CT = cortical thickness, adj. = adjusted, see Fig. 2 for abbreviations used 
in neurobiological marker names. 

BA
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3. Discussion 

Patterns of spatial colocalization between macroscale brain structure and the underlying 

neurobiology provide in vivo insight into healthy and pathological processes that are otherwise 

inaccessible to human studies. We find that the colocalization between developmental changes of 

cortex morphology and corresponding adult-derived neurotransmitter receptor, brain metabolism, 

and cell type profiles closely reflects neurodevelopmental processes across various biological lev-

els (see Figs. 6, S20, and Tab. S4 for a descriptive overview). While synaptogenesis and neuronal 

and glial proliferation continue into the first postnatal years, the second and third life decades are 

marked by a targeted reduction of neurons and cell components, likely reflecting functional spe-

cialization9,43–50. In line with our findings, dopamine D1 receptor activity was reported to peak in 

adolescence and young adulthood before declining steadily with age51–53. Our results concerning 

somatostatin-expressing interneurons fit with prior reports showing a marked decrease of somato-

statin interneuron markers within the first decade of life50. Similarly in line with our findings, mi-

croglia have been implicated in synaptic remodeling6,12,16 and in myelination54,55, which has been 

shown to continue into young adulthood11,15,56–58. Approaching adulthood, cortical development 

becomes less dynamic with most regions taking stable or steadily decreasing aging trajectories1,3. 

We find these phases to be reflected in spatial colocalization patterns in that most neurobiological 

markers colocalize with CT changes in early cortex development. Only the cholinergic system 

consistently predicts cortical changes throughout young and late adulthood, potentially pointing to 

its role in healthy and pathological aging59. 

Normative modeling of large-scale neuroimaging data has received considerable attention 

as a tool to translate basic research into clinical applications1,3,27,60. We show that if used as a ref-

erence for typical brain development, combining normative models of brain regional features with 

spatial colocalization approaches can facilitate discovery of physiological mechanisms underlying 

specific conditions. Going beyond this group-level discovery approach, we demonstrate the feasi-

bility of spatial colocalization analyses in single subjects by mapping individual-level deviations 

from normative trajectories to specific neurobiological markers. In view of this ability of molecular 

and cellular neurobiological markers to explain typical developmental and maturational patterns of 

the cortex, studying how these findings translate to atypical neurodevelopment61 is a promising 

path for future research. Establishing a robust mapping between deviating brain developmental 

patterns and underlying biological processes provides value not only for biomarker discovery but 
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also for identification of potential therapeutic targets. As promising candidates for clinical transla-

tion, we identify the dopaminergic system23,62 and microglial cell populations63 for early develop-

ment, as well as the cholinergic system in context of pathological aging64.  

Importantly, spatial association analyses as applied here do not impose causality and, thus, 

the reported associations only provide indirect evidence for involvement of specific neurobiologi-

cal markers in cortical maturation and therewith potential guidance to future causal studies of spe-

cific processes. The analyses are also limited by the heterogeneity of the brain atlases which were 

derived from independent adult populations of varying age and sex, processed with different strat-

egies, and in part – as was the developmental gene expression data – derived from postmortem 

samples19. Similar restrictions apply to the normative CT model which is largely based on the 

WEIRD (Western, Educated, Industrialized, Rich, and Democratic65) population3,66. The contribu-

tion of these factors needs to be quantified in future research. Nonetheless, the high replicability of 

the observed associations despite the noise introduced by these limitations rather strengthens the 

robustness of our findings. 
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Fig. 6: Summary of study findings in the context of prior literature 

Condensed visualization of the reported results (first line of each block, highlighed are markers that showed 
consistent results) in context with related results of previous human studies investigating similar biological 
processes or cell populations (lines below). Each header indicates one neurobiological marker, each thin 
black line overlaid by a colored bar indicates results from one study. If a study reported multiple results 
pertaining to the same process (e.g., from two different brain regions), bars were laid over each other. Thin 
black lines: overall time span investigated. Colored overlay: time period in which significant associations 
to CT (change) patterns were reported (nominal p < 0.05), independent of the sign of the association. Large 
dots: Timepoint of the maximum association. See also Fig. S20 and Tab. S4 for a more comprehensive 
overview including various topics. Abbreviations: ST = somatostatin, CR = calretinin, sMRI = structural 
MRI, CBF = cerebral blood flow, PET = positron emission tomography, ASL = arterial spin labeling, 
ACh(E) = acetylcholine (esterase), see Fig. 2 for abbreviations used in neurobiological marker names. 
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4. Methods 

4.1. Ethics 

No new human data were acquired for this study. Ethical approval for usage of publicly 

available and restricted-access databanks including human demographic, behavioral, and neuroim-

aging data has been granted by the Heinrich-Heine-University, Düsseldorf, Germany. Specific ap-

proval for collection and sharing of the used data (brain atlases, Braincharts model, Human Brain 

Transcriptome, ABCD, and IMAGEN) were provided by local ethics committees; detailed infor-

mation is available in the cited sources. Use of the ABCD data is registered at the NDA database 

at http://dx.doi.org/10.15154/1528657. The responsible IMAGEN investigator is T. Banaschewski.  

4.2. Software 

Multimodal brain atlases were retrieved and processed from/with neuromaps35, abagen67, 

JuSpace28, or author sources. Analyses of associations between CT and cortical atlases were con-

ducted using JuSpyce 0.0.268 in a Python 3.9.11 environment68. JuSpyce 

(https://github.com/LeonDLotter/JuSpyce) is a toolbox allowing for flexible assessment and sig-

nificance testing of associations between multimodal neuroimaging data, relying on imaging space 

transformations from neuromaps35, brain surrogate map generation from brainSMASH69, and sev-

eral routines from Nilearn70, scipy71, NiMARE72, statsmodels, numpy, and pandas. Visualizations 

were created using matplotlib73, seaborn74, and surfplot75. The PCNtoolkit76,77 was used to generate 

modeled CT data, as well as site-adjusted/predicted CT data and deviation scores for ABCD and 

IMAGEN subjects.  

4.3. Data sources and processing 

4.3.1. Atlases of molecular and cellular neurobiological markers 

Multilevel neurobiological atlases (Ext. Data Fig. 1) were separated into two broad catego-

ries according to their source modality. Sample characteristics and data sources are provided in 

Ext. Data Tab. 1. 

The neuroimaging (“ni-”) dataset consisted of group-average nuclear imaging atlases (neu-

rotransmitter receptors, brain metabolism and immunity, synaptic density, and transcriptomic ac-

tivity) and an MRI-based marker of cortical microstructure (T1/T2 ratio; Text S1.1.1)28,29,35,78–81. 

Maps were (i) transformed from fsLR (metabolism and T1/T2) or Montreal Neurological Institute 

http://dx.doi.org/10.15154/1528657
https://github.com/LeonDLotter/JuSpyce
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space (all others) to fsaverage5 space using registration fusion35,82, (ii) parcellated in 74 cortical 

regions per hemisphere83, and (iii) Z-standardized across parcels within each atlas. 

Cell type (“ce-”) atlases were built by (i) retrieving genetic cell type markers identified by 

Lake et al.33 and Darmanis et al.34 via single-nucleus RNA sequencing in human brain tissue from 

the PsychENCODE dataset84, (ii) extracting Allen Human Brain Atlas mRNA expression values18 

for each Destrieux parcel and each marker gene using abagen67 (default settings, data mirrored 

across hemispheres, Text S1.1.2), (iii) Z-standardizing the data across parcels within each gene, 

and (iv) taking the uniform average of the data across genes within each cell type. 

We reduced the dimensionality of the atlas datasets to decrease multicollinearity in multi-

variate regression analyses. As the nuclear imaging and mRNA expression data likely differed 

strongly in terms of confounds and signal-to-noise ratio, and to study molecular- and cellular-level 

effects separately, data sources were not mixed during dimensionality reduction. To retain inter-

pretability, we used factor analysis for dimensionality reduction (minimum residuals, promax ro-

tation). All unrotated factors that explained ≥ 1% of variance of each dataset were retained. We 

chose the oblique rotation method as the resulting factor intercorrelation would be expected from 

non-independent biological processes or cell populations. Resulting predictors were named by as-

signing each original atlas to the factor it loaded on the most (nuclear imaging: ni1–n; mRNA 

expression: ce1–n; MRI: only microstructural marker, no dimensionality reduction: mr1). In an 

additional analysis, we ensured that the factor solution estimated on the original brain atlases ex-

plained more variance in the original dataset than factor analyses estimated on permuted brain maps 

(see Text 1.1.5). 

4.3.2. Braincharts CT model 

The Braincharts reference model was estimated on 58,836 subjects from 82 sites (50% 

training/testing split; 51% female; age range 2.1–100 years; age distribution: Fig. S3). Detailed 

information on the included samples, CT estimation, and modeling procedure was provided by 

Rutherford et al.3. Notably, while ABCD baseline data were included in the model estimation, 

ABCD follow-up and IMAGEN data were not. Briefly, T1-weighted MRI data were obtained from 

the original cohorts and FreeSurfer 6.085 was used to extract parcel-wise CT data. Image quality 

was ensured based on FreeSurfer’s Euler characteristic86 and manual quality control of 24,354 im-

ages3,36. CT development was modeled separately for each Destrieux parcel using warped Bayesian 
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linear regression models predicting CT from age, sex, and site as fixed effect. The applied meth-

odology was developed for use in large datasets, can model nonlinear and non-Gaussian effects, 

accurately accounts for confounds in multisite datasets, and allows for estimation of site batch 

effects in previously unseen data3,87–89.  

We extracted Braincharts CT data separately for females and males for each of 148 cortical 

parcels for 171 timepoints (5–90 years with 0.5-year steps) and 7 percentiles (1st, 5th, 25th, 50th, 

75th, 95th, and 99th). We focused on CT data from the age of 5 years onwards as the used FreeSurfer 

pipeline was not adjusted for very young ages3. For colocalization analyses, the extracted modeled 

CT data were used as is. For model-based (pseudo-)longitudinal analyses, we calculated the relative 

CT change ∆𝐶𝑇 from year 𝑖 to year 𝑗 based on the median (50th percentile) sex-average CT data as 

∆𝐶𝑇(",$) =
&'!(&'"
&'"

. Lifespan CT change was then calculated using a sliding window with 1-year 

steps and 5-year length from 5 to 90 years as ∆𝐶𝑇(",$), 𝑖 ∈ [5. .85], 𝑗 = 𝑖 + 5.  

4.3.3. ABCD and IMAGEN CT data 

Processed and parcellated CT data from the Adolescent Brain Cognitive Development 

(ABCD) cohort36 was taken directly from the ABCD 4.0 release. Baseline (T0, ~10 years) and 2-

year follow-up (T2) structural MRI data were processed using FreeSurfer 7.1.1. Details were pro-

vided by Casey et al.36 and in the release manual (http://dx.doi.org/10.15154/1523041). For the 

IMAGEN cohort37, T1-weighted MRI data at baseline (T0, ~14 years) and at one or two follow-up 

scans (T5, ~19, and T8, ~22 years) were retrieved and processed with FreeSurfer’s standard pipe-

line (7.1.1). Following Rutherford et al.3, for quality control we relied on an Euler-like metric, i.e., 

the total number of surface defects as provided by FreeSurfer. We excluded subjects that exceeded 

a threshold of 𝑄3 + 𝐼𝑄𝑅 × 1.5 calculated in each sample across timepoints86,90 or failed the manual 

quality ratings provided in the ABCD dataset. One ABCD study site (MSSM) stopped data collec-

tion during baseline assessment and was excluded. We utilized the Braincharts model to harmonize 

CT data of the two datasets across sites (ABCD: n = 20; IMAGEN: n = 8) and to derive individual 

deviation scores to be used only in sensitivity analyses. Site effects were estimated in healthy sub-

samples of both dataset’s baseline data (n = 20 per site, 50% female) distributed evenly across 

baseline age ranges. These subjects including their follow-up data, and all subjects with data for 

less than two study time points, were excluded from further analyses. As the ABCD baseline data 

were used in training the Braincharts model, we conducted sensitivity analyses on the non-adjusted 

data to estimate potential overfitting effects.  

http://dx.doi.org/10.15154/1523041
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Colocalization analyses were calculated on the site-adjusted and original CT values at each 

timepoint. For longitudinal analyses, the relative CT change between each time point within each 

cohort was calculated as above (ABCD: T0–T2; IMAGEN: T0–T8, T0–T5, and T5–T8). 

4.4. Null map-based significance testing 

Spatial associations between brain maps can be assessed in correlative analyses in the sense 

of testing for cortex- or brain-wide alignment of the distributions of two variables A (e.g., CT) and 

B (e.g., a neurotransmitter receptor)11,28,29,91. Effect sizes (e.g., correlation coefficients) resulting 

from correlating A and B convey interpretable meaning. However, parametric p values do not, as 

they are influenced by the rather arbitrary number of “observations” (between thousands of 

voxels/vertices and a few parcels) and spatial autocorrelation in the brain data92. Null model-based 

inference approaches circumvent this problem by comparing the observed effect size to a null dis-

tribution of effect sizes obtained by correlating the original brain map A with a set of permuted 

brain maps generated from B to derive empirical p values. From several approaches proposed to 

preserve or reintroduce spatial autocorrelation patterns in null maps92, we relied on the variogram-

based method by Burt et al.69 as implemented in JuSpyce via BrainSMASH35,68,69. 

4.5. Discovery analyses based on the Braincharts model 

4.5.1. Lifespan colocalization trajectories 

To characterize lifespan trajectories of colocalization between cross-sectional CT and mul-

tilevel neurobiological markers, we calculated Spearman correlations between each brain atlas and 

modeled CT data at each extracted time point and percentile. Smoothed regression lines (locally 

estimated scatterplot smoothing) were estimated on data from all percentiles combined to highlight 

developmental trajectories. As the resulting developmental patterns were largely similar across 

sexes, we performed the main analyses on female-male averaged CT data and reported sex-wise 

results in the supplementary materials. 

4.5.2. Prediction of CT change  

The main objective of this study was to determine the extent to, and the temporal patterns 

in which, multilevel neurobiological marker could explain CT development and lifespan change. 

To achieve this goal, we designed a framework in which we “predicted” stepwise relative CT 

change from one or more brain atlases in multivariate or univariate regression analyses. The 
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amount of CT variance explained R2 was used as the main outcome measure (adjusted in multivar-

iate analyses). Exact one-sided p values were calculated by generating a constant set of 10,000 null 

maps for each brain atlas and comparing observed R2 values to R2 null distributions obtained from 

10,000 regression analyses using the null maps as predictors.  

To determine the general extent to which CT development could be explained, we per-

formed one multilinear regression per lifespan timestep (81 models) using (i) all neuroimaging and 

(ii) all mRNA expression-based atlases. In an additional analysis, we assessed the result combining 

all atlases irrespective of modality. The resulting p values were FDR-corrected across all models 

and atlas source modalities. To quantify individual atlas-wise effects and identify specific neuro-

biological markers of potential relevance to CT development, we performed univariate regression 

analyses per timestep and atlas (21 × 81 models), correcting for multiple comparisons using FDR 

correction within each modality. In sensitivity analyses, we assessed effects of correcting for base-

line CT (regression of cross-sectional CT at year x from CT change between year x and year y), 

adjusting CT percentile (1st and 99th), sex (female and male separately), and window length (1-

year, 2-year). As above, the results were consistent across sexes, thus all main analyses were re-

ported for sex-average CT data and the following model-based analyses were performed only on 

sex-average data. 

4.5.3. Marker-wise contributions to explained CT change 

Aiming to identify when and how neurobiological markers contributed to explaining CT 

change, we retained only those brain atlases that significantly explained CT development individ-

ually (FDR correction) and conducted dominance analyses “predicting” CT change from this joint 

set of atlases. Dominance analysis aims to quantify the relative importance of each predictor in a 

multivariate regression. The total dominance statistic is calculated as the average contribution of a 

predictor x to the total R2 across all possible subset models of a multivariate regression and can 

here be interpreted as the extent to which CT development during a certain time period is explained 

by x in presence of the whole set of predictors X and as a fraction of the extent to which CT devel-

opment is explained by set X29,30,40. Following from this, in our models, the sum of the atlas-level 

R2 at a given timespan equals the total R2 at this time point. Significance of dominance analyses 

was determined as described above by generating null distributions and estimating empirical p 

values for both, the “full model” multivariate R2 and the predictor-wise total dominance R2. Finally, 

Spearman correlations between CT change and multilevel brain atlases were conducted to indicate 

the directionality of associations. 
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Dominance analyses were conducted at each timestep and, to highlight the main postnatal 

developmental period between child and adulthood, on the CT development across this entire pe-

riod defined as ∆𝐶𝑇(),*+) (82 models). Resulting p values were corrected across the whole analysis 

(full model and atlas-wise: 82 + 82 × 9 p values).  

4.5.4. Brain-regional influences on CT change association patterns 

To estimate the importance of individual brain regions for the associations between CT 

change and brain atlases, we relied on the atlas-wise residual differences across brain-regions as 

unitless measures of the influence of individual cortex regions on the dominance analysis results. 

The residual difference of prediction errors ∆𝑃𝐸 for each predictor x out of the predictor set X was 

calculated as ∆𝑃𝐸 = 7𝑃𝐸,∖{/}7 − |𝑃𝐸,|. The results were visualized on surface maps for descrip-

tive interpretation.  

4.5.5. Relationships between dimensionality-reduced and original multilevel atlases 

Assessing whether the factor-level atlases represented the original multilevel atlases ac-

cording to the applied atlas-factor-association scheme, we performed (i) dominance analyses and 

(ii) univariate regressions per factor-level atlas using only the strongest associated original atlases 

as predictors. The latter were defined as the five atlases that loaded the most on each factor if the 

absolute loading exceeded 0.3. FDR correction was performed independently for dominance anal-

yses and univariate regressions across all tests. 

4.6. Validation analyses based on developmental gene expression data 

4.6.1. Data sources and (null) gene set construction 

Normalized developmental gene expression data for n = 17,565 genes was downloaded 

from the Human Brain Transcriptome database (https://hbatlas.org/pages/data); the original dataset 

was published by Kang et al.9. As of the postnatal focus of our study, we included only subjects 

after birth, resulting in n = 33, aged between 0.33 and 82.05 years. The original data was sampled 

across multiple cortical regions and, in some cases, both hemispheres per subject. However, be-

cause a maximum of only 11 cortex regions was sampled, we decided to average the data per 

subject across hemispheres and neocortical areas (cf. Kang et al.).  

We identified the original brain atlases that loaded most strongly on each factor-level mul-

tilevel neurobiological marker (cf. section 4.6.5). Each of these original atlases was represented in 

https://hbatlas.org/pages/data
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the genetic data through a single gene or a set of genes (Ext. Data Tab. 1); in case of gene sets, 

gene expression data was averaged across genes. For most nuclear imaging maps, we selected the 

genes or gene sets that coded for, or was associated with, the respective tracer target. For brain 

metabolism maps, we took two gene sets associated with aerobic and anaerobic glycolysis from 

Goyal et al.42. We did not have a gene set for the CBF (cerebral blood flow) map. For cell type 

maps, we took the original gene sets from which the maps were generated33,34.  

For permutation-based significance testing (see below), we created n = 10,000 null gene 

expression datasets by randomly selecting genes or same-sized gene sets from n = 2,154 non-brain 

genes (https://www.proteinatlas.org/humanproteome/brain/human+brain, “Not detected in brain”). 

4.6.2. Associations to temporal patterns of explained CT development 

The following process was used to test for associations between CT change explained by 

neurobiological markers and developmental gene expression trajectories: (i) We fitted a smoothed 

regression line (locally estimated scatterplot smoothing) to the gene expression data associated 

with each gene/ gene set as well as to the respective null gene expression datasets. (ii) For each 

neurobiological marker from section 4.6.3, we identified the time period in which it explained CT 

change significantly (FDR-corrected). (iii) For each of the (null) gene expression trajectories asso-

ciated with the current neurobiological marker, we calculated the average gene expressions during 

and outside of the significant time period. (iv) We separately compared the mean and the ratio of 

gene expression during vs. outside the significant time period between the observed and null gene 

expression data to derive empirical one-sided p values for the association between each multilevel 

neurobiological marker and each associated gene/gene set. (v) FDR-correction was applied across 

all tests at once. A significantly higher mean expression would indicate increased cortical expres-

sion of a marker during the tested time period as compared to non-brain genes. An increased ratio 

would broadly indicate that the marker’s gene expressions peaks during the tested time period. 

4.7. Validation analyses based on ABCD and IMAGEN single-subject data 

4.7.1. Developmental colocalization trajectories 

First, we tested whether colocalization patterns between multilevel atlases and single-sub-

ject cross-sectional CT followed the predictions of the Braincharts model. Spearman correlations 

were calculated between each subject’s CT values and each atlas at all available timepoints, for 

both site-adjusted CT data and the data prior to site-effect-correction. 

https://www.proteinatlas.org/humanproteome/brain/human+brain
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4.7.2. Explained CT development patterns on cohort- and single-subject levels 

Following, we assessed how neurobiological markers that significantly explained modeled 

CT development during the period covered by ABCD and IMAGEN data (9–25 years) performed 

in single-subject longitudinal data. Dominance analyses were performed in two steps. First, for 

each of the four investigated time spans (ABCD: ~10–12; IMAGEN: ~14–22, ~14–19, 19–22 

years), one dominance analysis was calculated to predict the cohort-average CT change pattern 

from neurobiological markers. Second, dominance analyses were calculated in the same fashion, 

but for every subject. For comparison, analyses were repeated on CT change patterns as predicted 

by the Braincharts model from each subject’s age and sex. For cohort-average dominance analyses, 

exact p values were estimated as described for the stepwise model-based analyses. For individual-

level analyses, instead of estimating p values for each subject, we tested whether the mean R2 values 

of the full models and each predictor observed in each cohort and time span were significantly 

higher than was estimated in 1,000 null-analyses with permuted atlas data. Finally, we repeated 

subject-level analyses on the original CT change data prior to site-effect-correction and on the 

longitudinal change of deviation Z scores as returned by the Braincharts model3. 

Finally, we evaluated how the subject-level regression models predicting CT change pat-

terns from neurobiological markers generalized from the subject-level normative CT change pat-

terns to the actual observed CT change. For that, we applied the regression model parameters esti-

mated on each subject’s normative CT change patterns to each subject’s observed CT change and 

evaluated model fit as the subject-level correlation between predicted and observed CT change. To 

estimate the effect size, results were contrasted to null analyses in which each regression model 

was estimated using 1,000 permuted multilevel brain maps. Further sensitivity analyses were con-

ducted to estimate how CT change predictions were affected by follow-up duration, sex, study site, 

“normativity” of CT and CT change patterns [correlation between predicted and observed CT 

(change), average Braincharts CT deviation (change), count of extreme deviation (change)], and 

data quality (number of surface defects). Subject-level full model R2 values were compared by sex 

and study site using analyses of covariances corrected for follow-up duration (and sex). All other 

variables were correlated with full model R2 values using Spearman correlations. 
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6. Data availability 

All scripts and data supporting our analyses are available in a GitHub repository 

(https://github.com/LeonDLotter/CTdev/; DOI: https://doi.org/10.5281/zenodo.7901282), except 

for original data and derivatives from the ABCD and IMAGEN datasets that cannot be shared 

openly (https://abcdstudy.org/; https://imagen-project.org/). The Braincharts model is available 

from: https://github.com/predictive-clinical-neuroscience/braincharts.  

7. Acknowledgements 

LDL was supported by the Federal Ministry of Education and Research (BMBF) and the 

Max Planck Society (MPG), Germany. AS was funded by the Max Planck Society (Otto Hahn 

award) and Helmholtz Association’s Initiative and Networking Fund under the Helmholtz Interna-

tional Lab grant agreement InterLabs-0015, and the Canada First Research Excellence Fund 

(CFREF Competition 2, 2015–2016) awarded to the Healthy Brains, Healthy Lives initiative at 

McGill University, through the Helmholtz International BigBrain Analytics and Learning Labora-

tory (HIBALL).  

Data used in the preparation of this article were obtained from the Adolescent Brain Cog-

nitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive 

(NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-

10 and follow them over 10 years into early adulthood. The ABCD Study® is supported by the 

National Institutes of Health and additional federal partners under award numbers U01DA041048, 

U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, 

U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, 

U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, 

U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, 

U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/fed-

eral-partners.html. A listing of participating sites and a complete listing of the study investigators 

can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators de-

signed and implemented the study and/or provided data but did not necessarily participate in the 

analysis or writing of this report. This manuscript reflects the views of the authors and may not 

https://github.com/LeonDLotter/CTdev/
https://doi.org/10.5281/zenodo.7901282
https://abcdstudy.org/
https://imagen-project.org/
https://github.com/predictive-clinical-neuroscience/braincharts
https://abcdstudy.org/
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/consortium_members/


 30 

reflect the opinions or views of the NIH or ABCD consortium investigators. The ABCD data re-

pository grows and changes over time. The ABCD data used in this report came from 

http://dx.doi.org/10.15154s/1523041. 

This work received support from the following sources: the European Union-funded FP6 

Integrated Project IMAGEN (Reinforcement-related behaviour in normal brain function and psy-

chopathology) (LSHM-CT- 2007-037286), the Horizon 2020 funded ERC Advanced Grant 

“STRATIFY” (Brain network based stratification of reinforcement-related disorders) (695313), 

Human Brain Project (HBP SGA 2, 785907, and HBP SGA 3, 945539), the Medical Research 

Council Grant “c-VEDA” (Consortium on Vulnerability to Externalizing Disorders and Addic-

tions) (MR/N000390/1), the National Institute of Health (NIH) (R01DA049238, A decentralized 

macro and micro gene-by-environment interaction analysis of substance use behavior and its brain 

biomarkers), the National Institute for Health Research (NIHR) Biomedical Research Centre at 

South London and Maudsley NHS Foundation Trust and King’s College London, the Bundesmin-

isterium für Bildung und Forschung (BMBF grants 01GS08152; 01EV0711; Forschungsnetz AER-

IAL 01EE1406A, 01EE1406B; Forschungsnetz IMAC-Mind 01GL1745B), the Deutsche For-

schungsgemeinschaft (DFG grants SM 80/7-2, SFB 940, TRR 265, NE 1383/14-1), the Medical 

Research Foundation and Medical Research Council (grants MR/R00465X/1 and MR/S020306/1), 

the National Institutes of Health (NIH) funded ENIGMA (grants 5U54EB020403-05 and 

1R56AG058854-01), NSFC grant 82150710554 and European Union funded project “environ-

MENTAL”, grant no: 101057429. Further support was provided by grants from: the ANR (ANR-

12-SAMA-0004, AAPG2019 - GeBra), the Eranet Neuron (AF12-NEUR0008-01 - WM2NA; and 

ANR-18-NEUR00002-01 - ADORe), the Fondation de France (00081242), the Fondation pour la 

Recherche Médicale (DPA20140629802), the Mission Interministérielle de Lutte-contre-les-

Drogues-et-les-Conduites-Addictives (MILDECA), the Assistance-Publique-Hôpitaux-de-Paris 

and INSERM (interface grant), Paris Sud University IDEX 2012, the Fondation de l’Avenir (grant 

AP-RM-17-013 ), the Fédération pour la Recherche sur le Cerveau; the National Institutes of 

Health, Science Foundation Ireland (16/ERCD/3797), U.S.A. (Axon, Testosterone and Mental 

Health during Adolescence; RO1 MH085772-01A1) and by NIH Consortium grant U54 

EB020403, supported by a cross-NIH alliance that funds Big Data to Knowledge Centres of Ex-

cellence. 

http://dx.doi.org/10.15154s/1523041


 31 

8. Author contributions 

Conception and design: L. D. Lotter, J. Dukart, S. B. Eickhoff. Data acquisition and pro-

vision: J. Y. Hansen, B. Misic, C. Paquola, T. Banaschewski, F. Nees, G. J. Barker, A. L. W. Bokde, 

S. Desrivières, H. Flor, A. Grigis, H. Garavan, P. Gowland, A. Heinz, R. Brühl, J.-L. Martinot, M.-

L. Paillère, E. Artiges, D. Papadopoulos Orfanos, T. Paus, L. Poustka, S. Hohmann, J. H. Fröhner, 

M. N. Smolka, N. Vaidya, H. Walter, R. Whelan, G. Schumann, F. Nees, T. Banaschewski, 

IMAGEN Consortium. Analysis and interpretation: L. D. Lotter, A. Saberi, C. Paquola, J. Dukart. 

Manuscript drafting: L. D. Lotter, J. Dukart. Manuscript revision: All authors. Supervision: J. Du-

kart, S. B. Eickhoff. 

9. Competing interests 

Dr. Banaschewski served in an advisory or consultancy role for Lundbeck, Medice, Neurim 

Pharmaceuticals, Oberberg GmbH, and Shire. He received conference support or speaker’s fees 

from Lilly, Medice, Novartis, and Shire. He has been involved in clinical trials conducted by Shire 

and Viforpharma. He received royalties from Hogrefe, Kohlhammer, CIP Medien, and Oxford 

University Press. The present work is unrelated to the above grants and relationships. Dr. Barker 

has received honoraria from General Electric Healthcare for teaching on scanner programming 

courses. Dr. Poustka served in an advisory or consultancy role for Roche and Viforpharm and 

received speaker’s fees from Shire. She received royalties from Hogrefe, Kohlhammer, and 

Schattauer. The present work is unrelated to the above grants and relationships. All other authors 

report no biomedical financial interests or potential conflicts of interest. 

10. Additional information 

Supplementary methods and results S1.1–S1.8 as well as supplementary figures S1–S20 

are available in a separate PDF document. Supplementary tables S1–S4 are provided in a separate 

Excel file. Supplementary animations S1 and S2 are available as animated GIF files.   

  



 32 

11. Extended Data 

 

Ext. Data Tab. 1: Characteristics and data sources of the multilevel brain atlases 

Upper: Nuclear imaging maps from different primary data sources. The column Tracer/ Incl. markers 
shows the used tracers. Middle: Microstructural map, derived from T1/T2 ratio. Lower: Neural cell-types 
constructed from Allen Brain Atlas gene expression data. Here, the column Tracer/ Incl. markers shows 
“gene markers available in Allen Brain Atlas / gene markers available”. The column N refers to the number 
of subjects used to obtain the data. The columns Genes/ Gene sets list the genes used for developmental 
gene expression analyses as well as the numbers of genes that were available in the processed gene 
expression dataset. All references are cited in the main text or supplementary materials. Abbreviations: SD 
= standard deviation, MRI = magnetic resonance imaging, Incl. = included.  

Age [years]
mean SD min max Genes Incl. markers

Nuclear imaging
5HT1a 5-HT1a receptor [11C]CUMI-101 8 37.50 28.40 8.80 n.a. n.a. Beliveau et al., 2017 HTR1A 1 / 1
5HT1b 5-HT1b receptor [11C]P943 65 n.a. 33.70 9.70 n.a. n.a. Gallezot et al., 2010 HTR1B 1 / 1
5HT2a 5-HT2a receptor [11C]Cimbi-36 29 51.72 22.60 2.70 n.a. n.a. Beliveau et al., 2017 HTR2A 1 / 1
5HT4 5-HT4 receptor [11C]SB207145 59 69.49 25.90 5.30 n.a. n.a. Beliveau et al., 2017 HTR4 1 / 1
5HT6 5-HT6 receptor [11C]GSK215083 30 n.a. 36.60 9.00 n.a. n.a. Radhakrishnan et al., 2018 HTR6 1 / 1
5HTT Serotonin transporter [11C]DASB 100 29.00 25.10 5.80 n.a. n.a. Beliveau et al., 2017 SLC6A4 1 / 1
FDOPA Dopamine synthesis [18F]fluorodopa 12 n.a. n.a. n.a. n.a. n.a. Garcia-Gomez et al., 2018 DDC 1 / 1
D1 D1 receptor [11C]SCH23390 13 46.00 33.00 13.00 n.a. n.a. Kaller et al., 2017 DRD1 1 / 1
D2 D2 receptor [11C]FLB457 55 n.a. 32.50 9.70 n.a. n.a. Sandiego et al., 2015 DRD2 1 / 1
DAT Dopamine transporter [123I]-FP-CIT 174 n.a. 61.00 11.00 n.a. n.a. Dukart et al., 2018 SLC6A3 1 / 1
A4B2 α4β2 nicotinic receptor [F18]flubatine 30 n.a. 33.50 10.70 n.a. n.a. Hillmer et al., 2016 CHRNA4, CHRNB2 2 / 2
M1 Muscarinic receptor 1 [11C]LSN3172176 24 n.a. 40.50 11.70 n.a. n.a. Naganawa et al., 2021 CHRM1 1 / 1
VAChT Vesicular acetylcholine transporter [18F]FEOBV 18 n.a. 66.80 6.80 n.a. n.a. Aghourian et al., 2017 SLC18A3 1 / 1
mGluR5 Metabotropic receptor 5 [11C]ABP688 73 n.a. 19.90 3.04 n.a. n.a. Smart et al., 2019 GRM5 1 / 1
NMDA NMDA receptor [18F]GE-179 29 72.00 41.00 13.00 n.a. n.a. Galovic et al., 2021 GRIN1, GRIN2A–D 5 / 5

GABA GABAa GABA-A receptor [11C]flumazenil 10 100.00 26.60 7.00 n.a. n.a. Kaulen et al., 2022 GABRA1–6, B1–3, G1–3, D, E, P, Q16 / 16
Noradrenaline NET Noradrenaline transporter S,S-[11C]O-MRB 77 n.a. 33.40 9.20 n.a. n.a. Ding et al., 2010 SLC6A2 1 / 1
Endorphins MU Mu opioid receptor [11C]carfentanil 204 64.71 32.30 10.80 20.00 59.00 Kantonen et al., 2020 OPRM1 1 / 1
Cannabinoid CB1 Cannabinoid receptor 1 [11C]OMAR 77 n.a. 30.00 8.90 n.a. n.a. Normandin et al., 2015 CNR1 1 / 1
Histamine H3 Histamine receptor 3 [11C]GSK189254 8 n.a. 31.70 9.00 n.a. n.a. Gallezot et al., 2017 HRH3 1 / 1
Synaptic density SV2A Synaptic vesicle glycoprotein 2A [11C]UCB-J 10 70.00 36.00 10.00 n.a. n.a. Finnema et al., 2016 SV2A 1 / 1
Gene transcription HDAC Histone deacetylase [11C]Martinostat 8 50.00 28.60 7.60 18.00 44.00 Wey et al., 2016 HDAC1–11 11 / 11

COX1 Cyclooxygenase 1 [11C]PS13 11 63.64 30.82 6.69 23.00 42.00 Kim et al., 2020 PTGS1 1 / 1
TSPO Translocator protein [11C]PBR28 6 33.33 57.80 8.10 n.a. n.a. Lois et al., 2018 TSPO 1 / 1
CBF Cerebral blood flow [15O]H2O n.a. n.a.
CMRglu Cerebral metabolic rate of glucose [18F]FDG Goyal et al., 2014 36 / 38
GI Glycolytic index [15O]H2O / [15O]O2 Goyal et al., 2014 113 / 116

MR imaging
Cortical microstructure Microstr T1/T2 MRI ratio T1wT2w 417 46.28 n.a. n.a. 22.00 37.00 Human Connectome Project n.a.
mRNA expression

Ex1 Cortical projection neuron; L2/3 17 / 18 16 / 18
Ex2 Granule neuron; L3/4 9 / 11 11 / 11
Ex3 Granule neuron; L4 9 / 9 8 / 9
Ex4 Subcortical projection neuron; L4 15 / 17 16 / 17
Ex5 Subcortical projection neuron; L4-6 21 / 21 12 / 21
Ex6 Subcortical projection neuron; L5/6 34 /38 36 /38
Ex7 Corticothalamic projection neuron 6 / 6 4 / 6
Ex8 Corticothalamic projection neuron; L6 54 / 64 54 / 64
In1 VIP+, RELN+, NDNF+; L1/2 2 / 2 2 / 2
In2 VIP+, RELN-, NDNF-; L6 7 / 7 6 / 7
In3 VIP+, RELN+, NDNF-; L6 17 / 19 17 / 19
In4 VIP-, RELN+, NDNF+; L1-3 11 / 11 10 / 11
In5 CCK+, NOS1+, CALB2+; L2/3 7 / 11 10 / 11
In6 PVALB+, CRHBP; L4/5 5 / 6 5 / 6
In7 SST+, CALB1+, NPY+; L5/6 10 / 13 11 / 13
In8 SST+, NOS1+; L6 3 / 4 4 / 4
Astro Astrocytes 37 / 40 37 / 40
Endo Endothelial cells 76 / 82 78 / 82
Micro Microglia 21 / 25 24 / 25
OPC Oligodendrocyte progenitor cells 40 / 53 50 / 53
Oligo Oligodendrocytes 35 / 35 32 / 35

Vaishnavi et al., 2010

Target/InformationName

Serotonin

Acetylcholine

Tracer/ Incl. markers

42.42 25.40 2.60 20.00 33.00

Dopamine

Glutamate

Target system

Immune activity

33

Original gene sets from Lake et al., 
2016 and Darmanis et al., 2015

Genes/ Gene sets 

Glia cells

Excitatory neurons

Inhibitory neurons

<= 6 83.33 24.00 57.00
Lake et al., 2016; Darmanis 
et al., 2015; Allen Brain 
Atlas

42.50 13.38

N Male [%] Source

Metabolism
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Ext. Data Fig. 1: Multimodal nuclear imaging and neural cell type atlases 

Multimodal atlases after transformation to FreeSurfer space and parcellation into 148 cortical parcels 
(Destrieux parcellation). Nuclear imaging maps are colored orange-violet, gene expression maps yellow-
green, and the microstructural map is colored yellow-gray. See Ext. Data Tab. 1 for individual descriptions 
and sources. 
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Ext. Data Fig. 2: Multilevel neurobiological markers after factor analysis 

Parcellated brain atlases after dimensionality reduction mapped to the cortex. Nuclear imaging factors are 
colored orange-violet, gene expression factors yellow-green, and the microstructural map is colored 
yellow-gray. 
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Ext. Data Fig. 3: Colocalization between cross-sectional representative CT and multilevel 

neurobiologial markers across the lifespan 

Lifespan trajectories of colocalization between multilevel neurobiological brain markers and cross-sectional 
CT. For each marker, the upper panel shows the colocalization trajectory: Z-transformed Spearman 
correlation coefficients are shown on the y axis, age on the x axis; blue-to-orange lines indicate percentiles 
of modeled CT data (see legend, note that these do not show actual percentiles of colocalization strengths); 
the green line (LOESS = locally estimated scatterplot smoothing) was smoothed through the percentile data 
to highlight trajectories. The lower panel shows year-to-year changes (y axis) derived from the LOESS line 
in the upper plot. See Fig. S5A for results including ABCD and IMAGEN subjects. 
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Ext. Data Fig. 4: Individual dominance analyses using original multilevel atlases  

To determine if the factor-level predictors appropriately captured the original multimodal atlases, sets of 
spatial association analyses were calculated, predicting CT change across the lifespan from the original 
maps most closely associated to each factor. For each factor, the 5 original atlases that loaded most strongly 
on the factor were selected if their loading exceeded a threshold of 0.3. The first column shows the result 
of stepwise dominance analyses (black line = combined R2), the second column shows independent single 
linear regressions, and the third column depicts the colocalization pattern between CT change and original 
predictors to illustrate the sign of the spatial association. Gray shades in the first two columns show the 
null distributions associated with the individual factor-level R2 values. Abbreviations: See Figs. 2 and 3. 
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Ext. Data Fig. 5: Detailed results of ABCD and IMAGEN validation analyses  

Explained CT change in ABCD and IMAGEN cohorts across 4 study time periods (rows) in different 
analysis settings. Raincloud plots and scatters show distributions of R2 values resulting from cohort- or 
subject-wise dominance analyses. The leftmost gray elements depict the full model explained variance, the 
right-sided colored elements show the predictor-wise estimated total dominance statistics. For each 
subject- or cohort-wise analysis, the sum of predictor-wise R2 values equals the full model value. Stars 
indicate statistical significance determined based on null distributions of R2 values as estimated by rerunning 
regression analyses with predictor null maps (FDR-correction within each analysis/panel). See Fig. S15 for 
equivalent plots showing Spearman correlations. (Column 1) prediction result based on CT change as 
predicted by the Braincharts model. (Column 2) average CT change across each cohort. (Column 3) 
average CT change across each site within each cohort. (Column 4) CT change in single subjects. (Column 
5 and 6)  sensitivity analyses on subject-level data; (5) values without site-correction to estimate effects of 
overfitting, and (6) change between deviation Z scores as estimated by the normative model. 


