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• Human cerebral cortex morphology is subject to complex and diverse changes over the lifespan1,2.

• Several factors might influence cortical thickness (CT) development and lifespan changes, but human data are scarce. 

• Through spatial correlation approaches3,4, recent advances in normative modeling of population-scale neuroimaging 
data1,2 and availability of brain atlases covering a wide range of neural cell populations and neurobiological processes5–7, 
we identify potential mechanisms underlying human CT development.

• This work…

1) provides new hypotheses on mechanisms involved in human cortex development, 

2) introduces a framework for studying neurodevelopmental mechanisms in vivo on the individual level, promising new 
insights into typical and atypical neurodevelopment alike, and

3) further emphasizes the value of normative modeling frameworks in neurodevelopmental research.
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Which markers and cortex regions are most relevant across developmental stages?

• Only 9 markers can 
explain up to 57% of 
modeled CT change.

• D1/2 dopaminergic 
receptors, microglia, ST 
interneurons, and brain 
metabolism explain 
early CT development.

• Cholinergic and
glutamatergic receptors
explain later CT change.
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Do the observed association patterns replicate in single-subject longitudinal data?

• Modeled results repli-
cate in independent 
longitudinal data.

• 6 biological markers 
explain up to 59% of 
cohort-average and 
18% of single-subject 
CT development.

Combined markers Individual markers

To what extent can neurobiological markers explain patterns of cortical development?

• Molecular (Fig.) and 
cellular markers explain 
up to 55% of modeled 
lifespan CT change.

• Individual markers 
explain up to 40%.

How do spatial colocalization patterns develop across the lifespan?

• Neurobiological 
markers and modeled 
CT data show diverse 
lifespan colocalization 
trajectories.

Atlases of molecular and cellular 
“neurobiological markers”5–7

(n = 49, nuclear imaging, ABA, MRI)
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Normative models of 
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(n = 58,836; ~2 to 100 years; 148 regions)
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